logo

制造工程管理中的优化理论与方法 (2012)

前言

  • Published Oct 19, 2018

前言

制造业是指对采掘的自然物质资源和工农生产的原材料进行加工和再加工,为国民经济其他部门提供生产资料,为全社会提供日用消费品的社会生产制造部门,在我国国民经济中占有重要地位。它不仅是吸纳劳动力就业和扩大出口的关键产业,也是高技术产业化的主要载体和实现现代化的重要基石,是衡量国家竞争力的重要标志。目前,我国制造业的产值已经超过了美国,成为世界第一制造大国。但是,与发达国家相比,我国的制造业仍然处于初级发展阶段,产品附加值不高,出口物品主要是劳动密集型产品,技术含量低,单位GDP的能耗居高不下,在自主知识产权的创新设计、先进制造工艺和装备及现代化管理等方面与发达国家仍然存在很大差距。制造工程管理是对一个产品从研发设计,到正式生产运营,直至产品最终销售的全过程所进行的管理过程,工程管理水平的高低直接关系到制造资源能否有效利用、生产效率能否提高和经济效益能否提升。因此,研究制造工程管理中的优化理论与方法,不仅可以为制造型企业的优化管理决策提供科学依据,对降低企业的资源消耗和运营成本以及提高企业的经营效益和客户满意度发挥积极作用,而且对于提升我国制造业的整体竞争力、建设制造强国,也具有至关重要的意义。

随着经济技术的发展和消费文化的演变,顾客对产品或服务的需求越来越个性化,而且瞬息万变。这种多变的市场环境对制造业提出了更高的要求,给制造业带来了空前的发展机遇和巨大的发展压力。企业在降低产品成本和提高产品质量的同时,必须及时有效地提供多元化的、顾客满意的甚至青睐的新产品,以满足顾客日益个性化的需求,进而引导顾客的需求倾向,甚至创造出顾客的新需求。由于受资源、能力和环境等因素的限制,制造型企业要想快速响应多变的个性化需求,在变化多端的市场中占领先机,就需要对制造过程中所涉及的各个环节进行优化协调与高效运营。因此,制造工程管理实践面临的一个巨大挑战就是如何优化协调制造系统的各个环节的运作决策,使制造系统更具有柔性和敏捷性,以便快速响应市场的变化,甚至导向市场的变化。

在制造工程管理实践中,存在大量的优化决策问题,其关键的科学问题主要包括制造流程优化、生产计划与调度优化、生产过程的控制与优化、采购与库存优化以及企业内部物流优化与供应链优化协调等。这些关键的科学问题不仅关系到企业成本控制、效益提高以及对市场响应的敏捷性等方面,甚至影响到企业品牌形象的树立和企业的可持续发展。这些关键的科学问题的本质可以抽象为在一定约束条件下优化特定目标的优化决策问题,企业内部的具体环境和生产条件、同行业的国内外竞争状况以及国家对企业在生态保护和节能降耗等方面的严格要求构成了决策问题的约束条件,而其目标往往是企业利润最大化、成本或能耗最小化、客户平均等待时间最小化等。制造工程管理中的优化理论与方法的研究对象是制造系统,研究制造工程管理中的优化理论与方法,必须在对制造过程中的各种优化决策问题进行科学提炼的基础上,深入研究相应的建模理论和求解方法,并在制造工程管理的实践中经受检验,然后才能获得有理论意义和实用价值的研究成果。

目前,已有的制造工程管理中的优化理论与方法研究主要是从运筹学和管理科学的视角,针对制造过程中一些特定环节的优化决策问题展开的,研究成果比较丰富。例如,在生产调度方面的理论成果就有针对整个生产线流程或生产线流程上的瓶颈机器或大型设备的调度问题两类。像流水作业、车间作业、开放作业等串行调度问题是针对不同生产环境下整个生产流程的,而单机、平行机调度问题则是针对生产线上的重要设备;库存控制问题自1915年Harris提出经济订货批量模型以来,也一直是国内外众多学者关注的热点之一,并取得了丰硕的研究成果,但多数集中在连续时间无限周期情形下的批量问题以及离散时间多周期情形下不考虑定价的批量问题;还有车辆路径问题(vehicle routing problem,VRP)也有较广泛的研究成果,但绝大部分研究的是确定性VRP问题;除此之外,还有许多其他优化问题,如下料问题、装箱问题等方面的研究成果。这些优化决策方法无论是生产调度优化还是车辆路径优化等都是企业制造工程中的局部优化,然而在实际的制造工程系统中,物料采购、物流配送和生产调度等各个环节是相互关联与相互协作的,只有当这些研究成果能够在不同环节间很好地衔接和匹配时,才能够真正具有实用价值,同时各个环节的决策必须能从制造工程系统优化的角度很好地协调,这样才能使制造工程系统具有更好的柔性和敏捷性,进而为制造工程系统带来更大的效益。因此,对于制造工程管理而言,将制造工程系统各个环节联合起来进行更大范围的联合优化是其未来理论方法研究的必然趋势。

作者所在的科研团队长期从事过程优化与智能决策理论、信息管理与信息系统技术及其在工程管理中的应用等方面的研究工作,并且得到了国家自然科学基金、国家“863”计划以及省、部和企业委托的课题的大力支持。在制造工程管理中的优化理论与方法的理论研究方面,团队在前人研究工作的基础上,主要从生产批量与定价联合优化、生产调度优化、机器调度优化、库存控制优化、物流路径优化、供应链协调与优化六个方面较系统地开展了研究工作。在生产批量与定价联合优化方面,分别对允许供货延迟、库存能力受限、生产能力受限、考虑市场细分等情形下的定价与批量联合决策问题进行了较深入的研究;在生产调度优化方面,重点研究了高耗能领域中如何在生产调度的过程中同时实现能耗的控制;在机器调度优化方面,主要研究了维护时段可调、加工时间可变的带预防性维护的机器调度优化问题;在库存控制优化方面,着重研究了连续性生产策略下制造企业的最优生产库存计划问题;在物流路径优化方面,针对企业内部物流配送,研究了带时间窗约束的物流路径优化问题及其主要衍生问题,如带多时间窗约束的物流路径优化问题、速度时变的物流路径优化问题;在供应链协调与优化方面,针对制造商生产的弹性和销售商订购的灵活性,研究了多种生产和订购模式下供应链运作决策的协同匹配问题等。在制造工程管理中的优化理论与方法的应用研究方面,团队以我国多家大型联合企业为背景,针对这些企业生产周期长、占用资金高与高能耗的特点,研究了原料采购优化、考虑节能降耗的生产过程优化、考虑定期维护的大型设备调度优化、企业内部频繁的物流路径优化以及产成品库存的优化控制等优化问题。

本书是在团队最近十多年来在制造工程管理优化理论与方法方面的科研工作的基础上整理而成的。杨善林教授主持了与本书相关的大部分课题的研究工作,提出了本书的主要思想和学术观点,制定了本书的详细大纲,组织了本书的整理过程,并对全书进行了统稿、改写和最终定稿。周永务教授主持了部分课题的研究工作,认真审查了有关优化模型的合理性和求解方法的有效性,并协助杨善林教授对全书进行了认真细致的审查,提出了许多宝贵的修改建议。李凯博士参加了相关课题的研究工作和书稿整理工作,并对全书各章进行了融合汇总。参加相关课题研究和书稿整理工作的还有王圣东、闵杰、戴道明、马华伟、马英等。在研究过程中,参考了大量的国内外有关研究成果。

在此,衷心感谢国家自然科学基金、国家“863”计划以及省、部的相关科研管理部门和有关企业对团队科研工作的大力支持!衷心感谢法国巴黎中央理工大学(Ecole Centrale Paris)储诚斌教授和英国曼彻斯特大学(The University of Manchester)杨剑波教授、徐冬玲教授对团队成员的悉心指导!衷心感谢所有参考文献的作者!衷心感谢团队所在的“过程优化与智能决策”教育部重点实验室,它为团队科研工作创造了良好的学术环境和研究条件!衷心感谢科学出版社,它为本书的出版做了大量的精心细致的工作!

制造工程管理中的优化理论与方法是一个在理论与实践两个方面要求都很高的研究领域,加上作者的水平有限,定有疏漏之处,恳请读者批评指正。

作者

2012年2月21日于合肥

References

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[3]

[3]

[3]

[3]

[3]

[3]

[3]

[3]

[3]

[4]

[4]

[4]

[4]

[4]

[4]

[4]

[4]

[4]

[5]

[5]

[5]

[5]

[5]

[5]

[5]

[5]

[5]

[6]

[6]

[6]

[6]

[6]

[6]

[6]

[6]

[6]

[7]

[7]

[7]

[7]

[7]

[7]

[7]

[7]

[7]

[8]

[8]

[8]

[8]

[8]

[8]

[8]

[8]

[8]

[9]

[9]

[9]

[9]

[9]

[9]

[9]

[9]

[9]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[11]

[11]

[11]

[11]

[11]

[11]

[11]

[11]

[11]

[12]

[12]

[12]

[12]

[12]

[12]

[12]

[12]

[12]

[13]

[13]

[13]

[13]

[13]

[13]

[13]

[13]

[13]

[14]

[14]

[14]

[14]

[14]

[14]

[14]

[14]

[14]

[15]

[15]

[15]

[15]

[15]

[15]

[15]

[15]

[15]

[16]

[16]

[16]

[16]

[16]

[16]

[16]

[16]

[16]

[17]

[17]

[17]

[17]

[17]

[17]

[17]

[17]

[17]

[18]

[18]

[18]

[18]

[18]

[18]

[18]

[18]

[18]

[19]

[19]

[19]

[19]

[19]

[19]

[19]

[19]

[19]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[20]

[21]

[21]

[21]

[21]

[21]

[21]

[21]

[21]

[21]

[22]

[22]

[22]

[22]

[22]

[22]

[22]

[22]

[22]

[23]

[23]

[23]

[23]

[23]

[23]

[23]

[23]

[23]

[24]

[24]

[24]

[24]

[24]

[24]

[24]

[24]

[24]

[25]

[25]

[25]

[25]

[25]

[25]

[25]

[25]

[25]

[26]

[26]

[26]

[26]

[26]

[26]

[26]

[26]

[26]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[28]

[29]

[29]

[29]

[29]

[29]

[29]

[29]

[29]

[29]

[30]

[30]

[30]

[30]

[30]

[30]

[30]

[30]

[30]

[31]

[31]

[31]

[31]

[31]

[31]

[31]

[31]

[31]

[32]

[32]

[32]

[32]

[32]

[32]

[32]

[32]

[32]

[33]

[33]

[33]

[33]

[33]

[33]

[33]

[33]

[33]

[34]

[34]

[34]

[34]

[34]

[34]

[34]

[34]

[34]

[35]

[35]

[35]

[35]

[35]

[35]

[35]

[35]

[35]

[36]

[36]

[36]

[36]

[36]

[36]

[36]

[36]

[37]

[37]

[37]

[37]

[37]

[37]

[37]

[37]

[38]

[38]

[38]

[38]

[38]

[38]

[38]

[38]

[39]

[39]

[39]

[39]

[39]

[39]

[39]

[39]

[40]

[40]

[40]

[40]

[40]

[40]

[40]

[40]

[41]

[41]

[41]

[41]

[41]

[41]

[41] ,Çelik C. Two meta-heuristics for parallel machine scheduling with job splitting to minimize total tardi ness[J]. Applied Mathematical Modelling,2011,35:4117~4126.

" class="fullContentFlag"/>

[41]

[42]

[42]

[42]

[42]

[42]

[42]

[42]

[42]

[43]

[43]

[43]

[43]

[43]

[43]

[43]

[43]

[44]

[44]

[44]

[44]

[44]

[44]

[44]

[44]

[45]

[45]

[45]

[45]

[45]

[45]

[45]

[45]

[46]

[46]

[46]

[46]

[46]

[46]

[46]

[46]

[47]

[47]

[47]

[47]

[47]

[47]

[47]

[47]

[48]

[48]

[48]

[48]

[48]

[48]

[48]

[48]

[49]

[49]

[49]

[49]

[49]

[49]

[49]

[49]

[50]

[50]

[50] " class="fullContentFlag"/>

[50]

[50]

[50]

[50]

[50]

[51]

[51]

[51]

[51]

[51]

[51]

[51]

[51]

[52]

[52]

[52]

[52]

[52]

[52]

[52]

[52]

[53]

[53]

[53]

[53]

[53]

[53]

[53]

[53]

[54]

[54]

[54]

[54]

[54]

[54]

[54]

[54]

[55]

[55]

[55]

[55]

[55]

[55]

[55]

[55]

[56]

[56]

[56]

[56]

[56]

[56]

[56]

[56]

[57]

[57]

[57]

[57]

[57]

[57]

[57]

[57]

[58]

[58]

[58]

[58]

[58]

[58]

[58]

[58]

[59]

[59]

[59]

[59]

[59]

[59]

[59]

[59]

[60]

[60]

[60]

[60]

[60]

[60]

[60]

[60]

[61]

[61]

[61]

[61]

[61]

[61]

[61]

[61]

[62]

[62]

[62]

[62]

[62]

[62]

[62]

[62]

[63]

[63]

[63]

[63]

[63] " class="fullContentFlag"/>

[63]

[63]

[63]

[64]

[64]

[64]

[64]

[64]

[64]

[64]

[64]

[65]

[65]

[65]

[65]

[65]

[65]

[65]

[65]

[66]

[66]

[66]

[66]

[66]

[66]

[66]

[66]

[67]

[67]

[67]

[67]

[67]

[67]

[67]

[67]

[68]

[68]

[68]

[68]

[68]

[68]

[68]

[68]

[69]

[69]

[69]

[69]

[69]

[69]

[69]

[69]

[70]

[70]

[70]

[70]

[70]

[70]

[70]

[70]

[71]

[71]

[71]

[71]

[71]

[71]

[71]

[71]

[72]

[72]

[72]

[72]

[72]

[72]

[72]

[72]

[73]

[73]

[73]

[73]

[73]

[73]

[73]

[73]

[74]

[74]

[74]

[74]

[74]

[74]

[74]

[74]

[75]

[75]

[75]

[75]

[75]

[75]

[75]

[75]

[76]

[76]

[76]

[76]

[76]

[76]

[76]

[76]

[77]

[77]

[77]

[77]

[77]

[77]

[77]

[77]

[78]

[78]

[78]

[78]

[78]

[78]

[78]

[78]

[79]

[79]

[79]

[79]

[79]

[79]

[79]

[79]

[80]

[80]

[80]

[80]

[80]

[80]

[80]

[80]

[81]

[81]

[81]

[81]

[81]

[81]

[81]

[81]

[82]

[82]

[82]

[82]

[82]

[82]

[82]

[82]

[83]

[83]

[83]

[83]

[83]

[83]

[83]

[83]

[84]

[84]

[84]

[84]

[84]

[84]

[84]

[84]

[85]

[85]

[85]

[85]

[85]

[85]

[85] " class="fullContentFlag"/>

[85]

[86]

[86]

[86]

[86]

[86]

[86]

[86]

[86]

[87]

[87]

[87]

[87]

[87]

[87]

[87]

[88]

[88]

[88]

[88]

[88]

[88]

[88]

[89]

[89]

[89]

[89]

[89]

[89]

[89]

[90]

[90]

[90]

[90]

[90]

[90]

[90]

[91]

[91]

[91]

[91]

[91]

[91]

[91]

[92]

[92]

[92]

[92]

[92]

[92]

[92]

[93]

[93]

[93]

[93]

[93]

[93]

[93]

[94]

[94]

[94]

[94]

[94]

[94]

[94]

[95]

[95]

[95]

[95]

[95]

[95]

[95]

[96]

[96]

[96]

[96]

[96]

[96]

[96]

[97]

[97]

[97]

[97]

[97]

[97]

[97]

[98]

[98]

[98]

[98]

[98]

[98]

[98]

[99]

[99]

[99]

[99]

[99]

[99]

[99]

[100]

[100]

[100]

[100]

[100]

[100]

[100]

[101]

[101]

[101]

[101]

[101]

[101]

[101]

[102]

[102]

[102]

[102]

[102]

[102]

[102]

[103]

[103]

[103]

[103]

[103]

[103]

[103]

[104]

[104]

[104]

[104]

[104]

[104]

[104]

[105]

[105]

[105]

[105]

[105]

[105]

[105]

[106]

[106]

[106]

[106]

[106]

[106]

[106]

[107]

[107]

[107]

[107]

[107]

[107]

[107]

[108]

[108]

[108]

[108]

[108]

[108]

[108]

[109]

[109]

[109]

[109]

[109]

[109]

[109]

[110]

[110]

[110]

[110]

[110]

[110] ,Drozdowski M,Formanowicz P,et al. Scheduling preemptable tasks on parallel processors with limited availability[J]. Parallel Computing,2000,26:1195~1211.

" class="fullContentFlag"/>

[111]

[111]

[111]

[111]

[111]

[111]

[112]

[112]

[112]

[112]

[112]

[112]

[113]

[113]

[113]

[113]

[113]

[113]

[114]

[114]

[114]

[114]

[114]

[114]

[115]

[115]

[115]

[115]

[115]

[115] " class="fullContentFlag"/>

[116]

[116]

[116]

[116]

[116]

[116]

[117]

[117]

[117]

[117]

[117]

[117]

[118]

[118]

[118]

[118]

[118]

[119]

[119]

[119]

[119]

[120]

[120]

[120]

[120]

[121]

[121]

[121]

[121]

[122]

[122]

[122]

[122]

[123]

[123]

[123]

[123]

[124]

[124]

[124]

[125]

[125]

[126]

[126]

[127]

[127]

[128]

[128]

[129]

[129]

[130]

[130]

[131]

[131]

[132]

[132]

[133]

[133]

[134]

[134]

[135]

[135]

[136]

[136]

[137]

[137]

[138]

[138]

[139]

[139]

[140]

[140]

[141]

[141]

[142]

[142]

[143]

[143]

[144]

[144]

[145]

[145]

[146]

[146]

[147]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Copyright 2018 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1