logo

SCIENCE CHINA Chemistry, Volume 60, Issue 1: 157-162(2017) https://doi.org/10.1007/s11426-016-0021-0

A new method for improving the accuracy of miRNA detection with NaYF4:Yb,Er upconversion nanoparticles

More info
  • ReceivedJan 14, 2016
  • AcceptedMar 14, 2016
  • PublishedJul 18, 2016

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs, which play a central role in gene expression regulation and have been considered as excellent biomarker candidates for clinical diagnosis and prognosis. So far, many miRNAs detection methods require polymerase chain reaction (PCR) amplification following reverse transcription of miRNAs. These processes are complicated and time-consuming. In this work, we have developed a simpler method for miRNA detection based on base stacking hybridization happening on the surface of NaYF4:Yb,Er upconversion nanoparticles. In this method, the fluorescence of NaYF4:Yb,Er upconversion nanoparticles were functionalized as a reference standard, which can improve the accuracy of miRNA detection. On the basis of these findings, we suggest this novel approach for miRNA detection could be applied as an accurate and specific technique for miRNAs detection.


Funded by

National Natural Science Foundation of China(61301039,21205036,31270908,61271056,31540018)

Hunan Provincial Natural Science Foundation of China(13JJ4091)

Scientific Research Fund of Hunan Provincial Education Department(13A003)

China Postdoctoral Science Foundation funded project(2014T70459,2015T80488)

Scientific Research Fund of Hunan Provincial Education Department(13A003,the Economical Forest Cultivation,Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (61301039, 21205036, 31270908, 61271056, 31540018), the Hunan Provincial Natural Science Foundation of China (13JJ4091), the Scientific Research Fund of Hunan Provincial Education Department (13A003), China Postdoctoral Science Foundation funded project (2014T70459) and the Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013) 448].


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Jiang L, Duan D, Shen Y, Li J. Biosens Bioelectron, 2012, 34: 291-295 CrossRef PubMed Google Scholar

[2] Tan XY, Fan SC, Wu W, Zhang Y. Bone Res, 2015, 3: 5033 CrossRef Google Scholar

[3] Lu Z, Zhang L, Deng Y, Li S, He N. Nanoscale, 2012, 4: 5840-5842 CrossRef PubMed Google Scholar

[4] Heneghan HM, Miller N, Kerin MJ. Curr Opin Pharmacol, 2010, 10: 543-550 CrossRef PubMed Google Scholar

[5] Soifer HS, Rossi JJ, Sætrom P. Mol Ther, 2007, 15: 2070-2079 CrossRef PubMed Google Scholar

[6] Nikitina EG, Urazova LN, Stegny VN. 2012, 34: 2-8 Google Scholar

[7] Shen J, Stass SA, Jiang F. Cancer Lett, 2013, 329: 125-136 CrossRef PubMed Google Scholar

[8] Li JW, Robison K, Martin M, Sjodin A, Usadel B, Young M, Olivares EC, Bolser DM. Nucleic Acids Res, 2011, 40: D1313-D1317 CrossRef PubMed Google Scholar

[9] Hayes J, Peruzzi PP, Lawler S. Trends Mol Med, 2014, 20: 460-469 CrossRef PubMed Google Scholar

[10] Mou X, Li T, Wang J, Ali Z, Zhang Y, Chen Z, Deng Y, Li S, Su E, Jia Q, He N, Ni J, Cui D. J Biomed Nanotechnol, 2015, 11: 2057-2066 CrossRef Google Scholar

[11] Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Nature, 2013, 495: 384-388 CrossRef PubMed ADS Google Scholar

[12] Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Science, 2015, 347: 991-994 CrossRef PubMed ADS Google Scholar

[13] Thomson JM, Parker J, Perou CM, Hammond SM. Nat Meth, 2004, 1: 47-53 CrossRef PubMed Google Scholar

[14] Kang K, Zhang X, Liu H, Wang Z, Zhong J, Huang Z, Peng X, Zeng Y, Wang Y, Yang Y, Luo J, Gou D, Mukhopadhyay P. PLoS ONE, 2012, 7: e48536 CrossRef PubMed ADS Google Scholar

[15] Wang M, Zhang P, Li Y, Liu G, Zhou B, Zhan L, Zhou Z, Sun X. Med Oncol, 2012, 29: 3113-3118 CrossRef PubMed Google Scholar

[16] Witwer KW, McAlexander MA, Queen SE, Adams RJ. RNA Biol, 2014, 10: 1080-1086 CrossRef PubMed Google Scholar

[17] Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Angew Chem, 2009, 121: 3318-3322 CrossRef Google Scholar

[18] Deng R, Tang L, Tian Q, Wang Y, Lin L, Li J. Angew Chem Int Ed, 2014, 53: 2389-2393 CrossRef PubMed Google Scholar

[19] Jiang L, Shen Y, Zheng K, Li J. Biosens Bioelectron, 2014, 61: 222-226 CrossRef PubMed Google Scholar

[20] Wang J, Ali Z, Wang N, Liang W, Liu H, Li F, Yang H, He L, Nie L, He N, Li Z. Sci China Chem, 2015, 58: 1774-1778 CrossRef Google Scholar

[21] Wang JH, Ali ZS, Si J, Wang NY, He NY, Li ZY. J Nanosci Nanotechnol (in press), 2016. Google Scholar

[22] Alonso-Cristobal P, Vilela P, El-Sagheer A, Lopez-Cabarcos E, Brown T, Muskens OL, Rubio-Retama J, Kanaras AG. ACS Appl Mater Interf, 2015, 7: 12422-12429 CrossRef PubMed Google Scholar

[23] Tu D, Zheng W, Liu Y, Zhu H, Chen X. Coordin Chem Rev, 2014, 273–274: 13-29 CrossRef Google Scholar

[24] Li B. Sci China Chem, 2015, 58: 970-970 CrossRef Google Scholar

[25] Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Proc Natl Acad Sci, 2013, 110: 7998-8003 CrossRef PubMed ADS Google Scholar

[26] DaCosta MV, Doughan S, Han Y, Krull UJ. Anal Chim Acta, 2014, 832: 1-33 CrossRef PubMed Google Scholar

[27] Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Adv Drug Deliver Rev, 2013, 65: 703-718 CrossRef PubMed Google Scholar

[28] Qiu P, Zhou N, Chen H, Zhang C, Gao G, Cui D. Nanoscale, 2013, 5: 11512-11525 CrossRef PubMed ADS Google Scholar

[29] Lin M, Zhao Y, Wang SQ, Liu M, Duan ZF, Chen YM, Li F, Xu F, Lu TJ. Biotech Adv, 2012, 30: 1551-1561 CrossRef PubMed Google Scholar

[30] Zhang L, Mao L, Lu Z, Deng Y, He N. J Nanosci Nanotechnol, 2016, 16: 1220-1224 CrossRef Google Scholar

[31] Zhang L, Wang Z, Lu Z, Xia K, Deng Y, Li S, Zhang C, Huang Y, He N. J Nanosci Nanotech, 2014, 14: 4710-4713 CrossRef Google Scholar

[32] Sarkar S, Dash A, Mahalingam V. Chem Asian J, 2014, 9: 447-451 CrossRef PubMed Google Scholar

[33] Shen J, Chen G, Ohulchanskyy TY, Kesseli SJ, Buchholz S, Li Z, Prasad PN, Han G. Small, 2013, 9: 3213-3217 CrossRef PubMed Google Scholar

[34] Zhao J, Lu Z, Yin Y, McRae C, Piper JA, Dawes JM, Jin D, Goldys EM. Nanoscale, 2013, 5: 944-952 CrossRef PubMed ADS Google Scholar

[35] Parinov S. Nucleic Acids Res, 1996, 24: 2998-3004 CrossRef Google Scholar

[36] Vasiliskov VA. Nucleic Acids Res, 2001, 29: 2303-2313 CrossRef Google Scholar

[37] Li Z, Zhang Y. Nanotechnology, 2008, 19: 345606 CrossRef PubMed ADS Google Scholar

[38] Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y. Small, 2009, 5: 2285-2290 CrossRef PubMed Google Scholar

[39] Zhang L, Lu Z, Bai Y, Wang T, Wang Z, Chen J, Ding Y, Yang F, Xiao Z, Ju S, Zhu J, He N. J Mater Chem B, 2013, 1: 1289 CrossRef Google Scholar

[40] Zhang L, Xia K, Bai YY, Lu Z, Tang Y, Deng Y, Chen J, Qian W, Shen H, Zhang Z, Ju S, He N. J Biomed Nanotechnol, 2014, 10: 1440-1449 CrossRef Google Scholar

  • Scheme 1

    Scheme for the detection of microRNAs based on the fluorescence of NaYF4:Yb,Er upconversion nanoparticles as a reference standard and base-stacking hybridization (color online).

  • Figure 1

    SEM (a) and TEM (b) images of the OA/NaYF4:Yb,Er nanoparticles.

  • Figure 2

    FT-IR spectra of OA/NaYF4:Yb,Er nanoparticles (a) and COOH-NaYF4:Yb,Er nanoparticles (b); photo of the COOH-NaYF4:Yb,Er nanoparticles in water (c) and the exciting under a 980 nm laser (d); (e) TEM image of COOH-NaYF4:Yb,Er nanoparticles (color online).

  • Figure 3

    (a) Fluorescence spectrum of the FAM-probe DNA modified UCNPs under an excitation wavelength of 480 nm; (b) fluorescence spectrum of the OA-UCNPs, COOH-UCNPs and DNA-UCNPs under an excitation wavelength of 980 nm (color online).

  • Figure 4

    Luminescence spectra of the capture probe-conjugated NaYF4:Yb,Er UCNPs (a) and the short fluorescence-based dye-labeled report-DNA (b) in the presence of different target miRNA concentrations under the continuous-wave excitation at 980 and 480 nm, respectively (color online).

  • Figure 5

    (a) The linear relationships between target-miRNAs concentration and the fluorescence intensity of FAM; (b) target-miRNAs concentration and the intensity ratios of FAM/UCNPs.

  • Figure 6

    Fluorsecence intensity of the short fluorescence-based dye-labeled report-DNA in the presence of let-7 miRNA family members under continuous-wave excitation at 480 nm (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1