logo

SCIENCE CHINA Chemistry, Volume 59 , Issue 9 : 1079-1087(2016) https://doi.org/10.1007/s11426-016-0056-0

Michael addition-based cyclization strategy in the total synthesis of Lycopodium alkaloids

More info
  • ReceivedJan 30, 2016
  • AcceptedFeb 28, 2016
  • PublishedAug 2, 2016

Abstract

Lycopodium alkaloids, a unique family of biologically important natural products isolated and characterized from various species of Lycopodium (sensu lato), have attracted extensive attention from chemists and pharmacists in the past three decades. Michael addition-based cyclization has been successfully employed as an elegant and efficient ring-construction protocol of constructing key cyclohexanone intermediates in the total synthesis of Lycopodium alkaloids. This mini-review chooses and summarizes several representative total syntheses of various Lycopodium alkaloids in which intramolecular Michael addition severed as the key methodology.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Bödeker K. Justus Liebigs Ann Chem, 1881, 208: 363-367 Google Scholar

[2] Murphy RA, Sarpong R. Chem Eur J, 2014, 20: 42-56 CrossRef PubMed Google Scholar

[3] Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G, Zhang DB, Chen JJ, Zhang L, Song QY, Gao K, Banejee J, Biswas S, Madhu NR, Karmakar SR, Surjyo Y, Morita H, Hirasawa Y, Kobayashi J. Phytochem Rev, 2016, 15: 51-85 CrossRef Google Scholar

[4] Liu J, Yu C, Zhou Y, Han Y, Qi B, Zhu Y. Acta Chim Sin, 1986, 44: 1035-1040 Google Scholar

[5] Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF. J Chem, 1986, 64: 837-839 Google Scholar

[6] Cheng YS, Lu CZ, Ying ZL, Ni WY, Zhang CL, Sang GW. Chin J New Drug Clin Remedies, 1986, 5: 197-199 Google Scholar

[7] Zhang RW, Tang XC, Han YY, Sang GW, Zhang YD, Ma YX, Zhang CL, Yang RM. Acta Pharmacol Sin, 1991, 12: 250-252 Google Scholar

[8] Ma X, Gang DR. Nat Prod Rep, 2004, 21: 752-772 CrossRef PubMed Google Scholar

[9] Ayer WA, Trifonov LS. The Alkaloids. San Diego: Acadimic Press. 1994, Google Scholar

[10] Yuan C, Chang CT, Axelrod A, Siegel D, Liau BB, Shair MD, White JD, Li Y, Kim J, Terinek M. J Am Chem Soc, 2010, 132: 5924-5925 CrossRef PubMed Google Scholar

[11] Li H, Wang X, Hong B, Lei X, Yang YR, Lai ZW, Shen L, Huang JZ, Wu XD, Yin JL, Wei K, Ding R, Fu JG, Xu GQ, Sun BF, Lin GQ. J Org Chem, 2013, 78: 800-821 CrossRef PubMed Google Scholar

[12] Cassayre J, Gagosz F, Zard SZ, Chandra A, Pigza JA, Han JS, Mutnick D, Johnston JN. Angew Chem Int Ed, 2002, 41: 1783-1785 CrossRef Google Scholar

[13] Yang Y, Dai M, Wang X, Li H, Lei X, Siengalewicz P, Mulzer J, Rinner U, Nakayama A, Kitajima M, Takayama H, Williams BM, Trauner D, Yang Y, Haskins CW, Zhang W, Low PL, Dai M, Nishimura T, Unni AK, Yokoshima S, Fukuyama T, Newton JN, Fischer DF, Sarpong R, Zhang J, Wu J, Hong B, Ai W, Wang X, Li H, Lei X. Synlett, 2014, 25: 2093-2098 CrossRef PubMed Google Scholar

[14] Rulev AY, Moberg C, Brahmachari G, Goutam D, Hack D, Dürr AB, Deckers K, Chauhan P, Seling N, Rübenach L, Mertens L, Raabe G, Schoenebeck F, Enders D, Perdriau S, Zijlstra DS, Heeres HJ, de Vries JG, Otten E, Farley AJM, Sandford C, Dixon DJ, Li J, Huang R, Xing YK, Qiu G, Tao HY, Wang CJ, Cichowicz NR, Kaplan W, Khomutnyk Y, Bhattarai B, Sun Z, Nagorny P. RSC Adv, 2014, 4: 26002-26012 CrossRef Google Scholar

[15] Yang H, Carter RG. J Org Chem, 2010, 75: 4929-4938 CrossRef PubMed Google Scholar

[16] Stork G, Kretchmer RA, Schlessinger RH, Ayer WA, Bowman WR, Joseph TC, Smith P, Kim SW, Bando Y, Horii Z, Heathcock CH, Kleinman EF, Binkley ES, Schumann D, Müller HJ, Naumann A, Kraus GA, Hon Y, Grieco PA, Dai Y, Padwa A, Brodney MA, Marino JP, Sheehan SM, Mori M, Hori K, Akashi M, Hori M, Sato Y, Nishida M, Colvin EW, Martin J, Parker W, Paphael RA, Shroot B, Doyle M. J Am Chem Soc, 1968, 90: 1647-1648 CrossRef Google Scholar

[17] Yang H, Carter RG, Zakharov LN. J Am Chem Soc, 2008, 130: 9238-9239 CrossRef PubMed Google Scholar

[18] Stork G, Winkler JD, Saccomano NA. Tetrahedron Lett, 1983, 24: 465-468 CrossRef Google Scholar

[19] Evans DA, Scheerer JR. Angew Chem Int Ed, 2005, 44: 6038-6042 CrossRef PubMed Google Scholar

[20] Burnell RH, Mootoo BS. Can J Chem, 1961, 39: 1090-1093 CrossRef Google Scholar

[21] Burnell RH. 1959: 3091–3093, Google Scholar

[22] Heathcock CH, Blumenkopf TA, Smith KM. J Org Chem, 1989, 54: 1548-1562 CrossRef Google Scholar

[23] Jung ME, Chang JJ. Org Lett, 2010, 12: 2962-2965 CrossRef PubMed Google Scholar

[24] Fang J, Ren J, Wang Z, Qu JP, Deng C, Zhou J, Sun XL, Tang Y. Tetrahedron Lett, 2008, 49: 6659-6662 CrossRef Google Scholar

[25] Takayama H, Katakawa K, Kitajima M, Yamaguchi K. Heterocycles, 2006, 69: 223 CrossRef Google Scholar

[26] Tanaka T, Kogure N, Kitajima M, Takayama H. J Org Chem, 2009, 74: 8675-8680 CrossRef PubMed Google Scholar

[27] Bradshaw B, Luque-Corredera C, Bonjoch J. Org Lett, 2013, 15: 326-329 CrossRef PubMed Google Scholar

[28] Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew Chem Int Ed, 2005, 44: 4212-4215 CrossRef PubMed Google Scholar

[29] Ding XH, Li X, Liu D, Cui WC, Ju X, Wang S, Yao ZJ, Ge HM, Zhang LD, Tan RX, Yao ZJ. Tetrahedron, 2012, 68: 6240-6248 CrossRef Google Scholar

[30] Zhang LD, Zhou TT, Qi SX, Xi J, Yang XL, Yao ZJ. Chem Asian J, 2014, 9: 2740-2744 CrossRef PubMed Google Scholar

[31] Zhang LD, Zhong LR, Xi J, Yang XL, Yao ZJ. J Org Chem, 2016, 81: 1899-1904 CrossRef PubMed Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号