logo

SCIENCE CHINA Chemistry, Volume 60, Issue 1: 144-150(2017) https://doi.org/10.1007/s11426-016-0115-x

Fullerenes and derivatives as electron transport materials in perovskite solar cells

More info
  • ReceivedMar 17, 2016
  • AcceptedApr 21, 2016
  • PublishedNov 4, 2016

Abstract

In this study, two fullerenes (C60, C70) and their methano-substitutions (PC61BM, PC71BM), as electron transport materials (ETMs) in perovskite solar cells (Pero-SCs), were systematically studied. As being used as ETMs, methanofullerenes, though with lower electron mobility compared to the counterpart pristine fullerenes, lead to higher power conversion efficiencies (PCEs) of Pero-SCs. The difference is likely caused by the fill-out vacancies and smoother morphology of the interfaces between ETM and perovskite layers, as they were prepared by different methods. In addition, compared to C60 and PC61BM, C70 and PC71BM showed priority in terms of short-circuit current density, which should be attributed to fast free charge extraction abilities.


Acknowledgment

This work is supported by the National Natural Science Foundation of China (51303118, 91333204), the Natural Science Foundation of Jiangsu Province (BK20130289), the Ph.D. Programs Foundation of Ministry of Education of China (20133201120008), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Scientific Research Foundation for Returned Scholars, Ministry of Education of China, and Beijing National Laboratory for Molecular Sciences, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[2] Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316-319 CrossRef PubMed ADS Google Scholar

[3] Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395-398 CrossRef PubMed ADS Google Scholar

[4] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[5] Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234-1237 CrossRef PubMed ADS Google Scholar

[6] Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341-344 CrossRef PubMed ADS Google Scholar

[7] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. Solid State Commun, 2003, 127: 619-623 CrossRef ADS Google Scholar

[8] Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum TC, Lam YM. Energy Environ Sci, 2014, 7: 399-407 CrossRef Google Scholar

[9] Stoumpos CC, Malliakas CD, Kanatzidis MG. Inorg Chem, 2013, 52: 9019-9038 CrossRef PubMed Google Scholar

[10] Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221-238 Google Scholar

[11] You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2015, 11: 75-81 CrossRef PubMed ADS Google Scholar

[12] Liu X, Yu H, Yan L, Dong Q, Wan Q, Zhou Y, Song B, Li Y. ACS Appl Mater Interf, 2015, 7: 6230-6237 CrossRef Google Scholar

[13] Liu X, Lei M, Zhou Y, Song B, Li Y. Appl Phys Lett, 2015, 107: 063901 CrossRef ADS Google Scholar

[14] Chang AHH, Ermler WC, Pitzer RM. J Phys Chem, 1991, 95: 9288-9291 Google Scholar

[15] Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727-3732 CrossRef PubMed Google Scholar

[16] Chiang CH, Tseng ZL, Wu CG. J Mater Chem A, 2014, 2: 15897-15903 CrossRef Google Scholar

[17] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784 CrossRef PubMed ADS Google Scholar

[18] Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Energy Environ Sci, 2014, 7: 2359-2365 CrossRef Google Scholar

[19] Lo MF, Guan ZQ, Ng TW, Chan CY, Lee CS. Adv Funct Mater 2015, 25: 1213-1218. Google Scholar

[20] Wang C, Wang C, Liu X, Kauppi J, Shao Y, Xiao Z, Bi C, Huang J, Gao Y. Appl Phys Lett, 2015, 106: 111603 CrossRef ADS Google Scholar

[21] Liang PW, Chueh CC, Williams ST, Jen AKY. Adv Energy Mater, 2015, 5: 1402321-1402327 CrossRef Google Scholar

[22] Dong Y, Li W, Zhang X, Xu Q, Liu Q, Li C, Bo Z. Small, 2016, 12: 1098-1104 CrossRef PubMed Google Scholar

[23] Chang CY, Huang WK, Chang YC, Lee KT, Chen CT. J Mater Chem A, 2016, 4: 640-648 CrossRef Google Scholar

[24] Eperon GE, Burlakov VM, Docampo P, Goriely A, Snaith HJ. Adv Funct Mater, 2014, 24: 151-157 CrossRef Google Scholar

[25] Lin N, Qiao J, Dong H, Ma F, Wang L. J Mater Chem A, 2015, 3: 22839-22845 CrossRef Google Scholar

[26] Yu H, Liu X, Xia Y, Dong Q, Zhang K, Wang Z, Zhou Y, Song B, Li Y. J Mater Chem A, 2016, 4: 321-326 CrossRef Google Scholar

[27] Dong Q, Wang Z, Zhang K, Yu H, Huang P, Liu X, Zhou Y, Chen N, Song B. Nanoscale, 2016, 8: 5552-5558 CrossRef PubMed ADS Google Scholar

[28] Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JTW, Wojciechowski K, Zhang W. J Phys Chem Lett, 2014, 5: 1511-1515 CrossRef PubMed Google Scholar

[29] van Reenen S, Kemerink M, Snaith HJ. J Phys Chem Lett, 2015, 6: 3808-3814 CrossRef PubMed Google Scholar

[30] Yan L, Song Y, Zhou Y, Song B, Li Y. Organic Electrons, 2015, 17: 94-101 CrossRef Google Scholar

[31] Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad WS, Barea EM, Fabregat-Santiago F, Mora-Sero I, Bisquert J. Nano Lett, 2014, 14: 888-893 CrossRef PubMed ADS Google Scholar

[32] Wang W, Yuan J, Shi G, Zhu X, Shi S, Liu Z, Han L, Wang HQ, Ma W. ACS Appl Mater Interf, 2015, 7: 3994-3999 CrossRef PubMed Google Scholar

[33] Bag M, Renna LA, Adhikari RY, Karak S, Liu F, Lahti PM, Russell TP, Tuominen MT, Venkataraman D. J Am Chem Soc, 2015, 137: 13130-13137 CrossRef PubMed Google Scholar

[34] Li JF, Zhang ZL, Gao HP, Zhang Y, Mao YL. J Mater Chem A, 2015, 3: 19476-19482 CrossRef Google Scholar

[35] Lu H, Ma Y, Gu B, Tian W, Li L. J Mater Chem A, 2015, 3: 16445-16452 CrossRef Google Scholar

[36] Chen CY, Chang JH, Chiang KM, Lin HL, Hsiao SY, Lin HW. Adv Funct Mater, 2015, 25: 7064-7070 CrossRef Google Scholar

  • Figure 1

    (a) Molecular structures of the pristine fullerenes and methanofullerenes, and device configuration adopted in this study. (b) Energy diagram for the materials applied in the devices.

  • Figure 2

    (a) The J-V curves and (b) corresponding IPCE curves of the Pero-SCs based on different ETMs: C60, C70, PC61BM and PC71BM.

  • Figure 3

    AFM height images, profile arithmetic average errors (Ra) and top-view SEM of perovskite or fullerene@perovskite films. The scale bars are 2 μm.

  • Figure 4

    The cross-sectional SEM images of devices with different ETMs: (a) C60, (b) C70, (c) PC61BM and (d) PC71BM. The scale bars are 500 nm.

  • Figure 5

    Nyquist plots of the Pero-SCs based on C60, C70, PC61BM and PC71BM. Inset is the equivalent circuit applied to fit the Nyquist plots.

  • Figure 6

    (a) The steady-state and (b) transient PL spectra of glass/PEDOT:PSS/perovskite/fullerenes. Ref represents the sample without fullerene layer.

  • Table 1   The highest and average photovoltaic parameters of Pero-SCs based on different ETMs: C60, C70, PC61BM and PC71BM.

    ETM

    Jsc

    (mA/cm2)

    Voc

    (V)

    FF

    (%)

    PCE

    (%)

    C60

    18.20±1.20

    (18.78)

    0.90±0.04

    (0.93)

    53.7±5.2 (59.4)

    8.82±0.80

    (10.43)

    C70

    20.03±1.07 (20.79)

    0.88±0.03 (0.88)

    48.3±3.8 (55.8)

    8.53±0.86

    (10.22)

    PC61BM

    20.91±0.49 (21.08)

    0.98±0.01 (1.00)

    64.8±1.7 (67.8)

    13.22±0.53 (14.29)

    PC71BM

    21.80±0.46 (22.61)

    0.95±0.01 (0.97)

    64.1±1.1 (66.4)

    13.26±0.53 (14.53)

  • Table 2   The parameters of the equivalent circuit fitted from the Nyquist plots shown in Figure 5

    ETM

    Rs

    (Ω cm2)

    Rhf

    (Ω cm2)

    Chf

    (nF cm2)

    Phf

    Rrec

    (Ω cm2)

    Cbulk

    (nF cm2)

    Pbulk

    C60

    2.05

    109.24

    0.42

    0.95

    44.28

    5.45

    0.89

    C70

    1.31

    115.84

    1.25

    0.87

    42.04

    16.49

    0.85

    PC61BM

    1.23

    14.64

    0.26

    1.02

    22.32

    0.56

    1.00

    PC71BM

    1.70

    8.33

    0.16

    1.05

    21.33

    0.57

    0.98

  • Table 3   Kinetic fit parameters for the transient PL spectra in Figure 6(b). The bi-exponential reconvolution fit with the forma R(t) =B1exp(–t/τ1)+B2exp(–t/τ2) was used. R1, R2 are the weights of the fast decay and slow decay, respectively

    τ1 (ns)

    R1 (%)

    τ2 (ns)

    R2 (%)

    Ref

    7.61

    6.86

    78.06

    93.14

    C60

    1.00

    40.75

    40.66

    59.25

    C70

    0.78

    42.42

    41.12

    57.58

    PC61BM

    0.93

    62.41

    16.60

    37.59

    PC71BM

    0.75

    92.80

    13.73

    7.20

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1