logo

SCIENCE CHINA Chemistry, Volume 60, Issue 3: 329-337(2017) https://doi.org/10.1007/s11426-016-0253-2

Progress on sensors based on nanomaterials for rapid detection of heavy metal ions

More info
  • ReceivedJun 8, 2016
  • AcceptedJul 11, 2016
  • PublishedOct 27, 2016

Abstract

The heavy metal ions, especially Cd2+, Pb2+ and Hg2+, show extremely hazard to the environment and human being. The measurement of heavy metal ions using sensors is catching more and more attention for its advantages of high sensitivity and selectivity, low-cost, convenience to handle and rapid detection. In recent years, nanomaterials such as gold nanoparticles (NPs), magnetic nanoparticles, graphene and nanocomposite materials are applied in sensors for improving sensitivity and selectivity, making the research on electrochemical (EC) sensors, spectrometric biosensors and colorimetric biosensors become a hot spot in the application to investigate heavy metal ions, in particular, Cd2+, Pb2+ and Hg2+. In this short review, the research of advanced detection of Cd2+, Pb2+ and Hg2+ and its progress based on nanomaterial sensors in recent years is reviewed.


Funded by

National Natural Science Foundation of China(61471168,61571187)

China Post-Doctoral Science Foundation(2016T90403)

Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013)


Acknowledgment

Acknowledgments This work was supported by the National Natural Science Foundation of China (61471168, 61571187), China Post-Doctoral Science Foundation (2016T90403), and the Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013) 448].


Interest statement

Conflict of interest The authors declare that they have no conflict of interest.


References

[1] Lu KP, Zhao SH, Wang DS. Sci China Ser B: Chem, 1990, 33: 303–310. Google Scholar

[2] Wittman R, Hu H. Environ Health Perspect, 2002, 110: 1261-1266 CrossRef Google Scholar

[3] García-Lestón J, Méndez J, Pásaro E, Laffon B. Environ Int, 2010, 36: 623-636 CrossRef PubMed Google Scholar

[4] Chen JP, Wang L, Zou SW. Chem Eng J, 2007, 131: 209-215 CrossRef Google Scholar

[5] Grandjean P, Weihe P, White RF, Debes F. Environ Res, 1998, 77: 165-172 CrossRef PubMed ADS Google Scholar

[6] He WS, Lu JJ. Sci China Ser B: Chem, 2001, 44: 178–184. Google Scholar

[7] Pohl P. TrAC Trends Anal Chem, 2009, 28: 117-128 CrossRef Google Scholar

[8] Wan Z, Xu Z, Wang J. Analyst, 2006, 131: 141-147 CrossRef PubMed ADS Google Scholar

[9] Galani-Nikolakaki S, Kallithrakas-Kontos N, Katsanos AA. Environ Sci, 2002, 285: 155–163. Google Scholar

[10] Davis AC, Calloway Jr. CP, Jones BT. Talanta, 2007, 71: 1144-1149 CrossRef PubMed Google Scholar

[11] Silva EL, Roldan PS, Giné MF. J Hazard Mater, 2009, 171: 1133-1138 CrossRef PubMed Google Scholar

[12] Pérez-Ràfols C, Serrano N, Díaz-Cruz JM, Ariño C, Esteban M. Talanta, 2016, 155: 8-13 CrossRef PubMed Google Scholar

[13] Tang S, Tong P, You X, Lu W, Chen J, Li G, Zhang L. Electrochim Acta, 2016, 187: 286-292 CrossRef Google Scholar

[14] Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D. Biosens Bioelectron, 2016, 78: 236-243 CrossRef PubMed Google Scholar

[15] Xu H, Zheng QL, Yang P, Liu JS, Xing SJ, Jin LT. Sci China Chem, 2011, 54: 1004-1010 CrossRef Google Scholar

[16] Xiang T, Zhang ZL, Liu HQ, Yin ZZ, Li L, Liu XM. Sci China Chem, 2013, 56: 567-575 CrossRef Google Scholar

[17] Zhang B, Chen JD, Zhu H, Yang TT, Zou ML, Zhang M, Du ML. Electrochim Acta, 2016, 196: 422-430 CrossRef Google Scholar

[18] Li Y, Zhang J, Xu C, Zhou YF. Sci China Chem, 2016, 59: 95–105. Google Scholar

[19] Wang W, Deng Y, Li S, Liu H, Lu Z, Zhang L, Lin L, Xu L. J Biomedical Nanotechnology, 2013, 9: 736-740 CrossRef Google Scholar

[20] Du J, Yin S, Jiang L, Ma B, Chen X. Chem Commun, 2013, 49: 4196-4198 CrossRef PubMed Google Scholar

[21] Sung YM, Wu SP. Sensors Actuators B-Chem, 2014, 201: 86-91 CrossRef Google Scholar

[22] Chansuvarn W, Tuntulani T, Imyim A. TrAC Trends Anal Chem, 2015, 65: 83-96 CrossRef Google Scholar

[23] Chen L, Li J, Chen L. ACS Appl Mater Interfaces, 2014, 6: 15897-15904 CrossRef PubMed Google Scholar

[24] Guo Y, Zhang Y, Shao H, Wang Z, Wang X, Jiang X. Anal Chem, 2014, 86: 8530-8534 CrossRef PubMed Google Scholar

[25] Han A, Zang L, An D, Lindsay J, Watts E. J Renew Sustain Energ, 2015, 7: 041504 CrossRef Google Scholar

[26] Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB. Sensors Actuators B-Chem, 2015, 213: 515-533 CrossRef Google Scholar

[27] Barton J, García MBG, Santos DH, Fanjul-Bolado P, Ribotti A, McCaul M, Diamond D, Magni P. Microchim Acta, 2016, 183: 503-517 CrossRef Google Scholar

[28] Zhou Y, Tang L, Zeng G, Zhang C, Zhang Y, Xie X. Sensors Actuators B-Chem, 2016, 223: 280-294 CrossRef Google Scholar

[29] Wei Y, Gao C, Meng FL, Li HH, Wang L, Liu JH, Huang XJ. J Phys Chem C, 2012, 116: 1034-1041 CrossRef Google Scholar

[30] Wu L, Fu X, Liu H, Li J, Song Y. Anal Chim Acta, 2014, 851: 43-48 CrossRef PubMed Google Scholar

[31] Liu G, Chen J, Hou X, Huang W. Anal Methods, 2014, 6: 5760-5765 CrossRef Google Scholar

[32] Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N. Sensors Actuators B-Chem, 2015, 207: 526-534 CrossRef Google Scholar

[33] Choi SM, Kim DM, Jung OS, Shim YB. Anal Chim Acta, 2015, 892: 77-84 CrossRef PubMed Google Scholar

[34] Ghanei-Motlagh M, Taher MA, Heydari A, Ghanei-Motlagh R, Gupta VK. Mater Sci Eng-C, 2016, 63: 367-375 CrossRef PubMed Google Scholar

[35] Xing H, Xu J, Zhu X, Duan X, Lu L, Wang W, Zhang Y, Yang T. J Electroanalytical Chem, 2016, 760: 52-58 CrossRef Google Scholar

[36] Xia F, Zhang X, Zhou C, Sun D, Dong Y, Liu Z. J Autom Method Manage Chem, 2010, 2010: 824197. Google Scholar

[37] Dai X, Qiu F, Zhou X, Long Y, Li W, Tu Y. Anal Chim Acta, 2014, 848: 25-31 CrossRef PubMed Google Scholar

[38] Dai X, Qiu F, Zhou X, Long Y, Li W, Tu Y. Electrochim Acta, 2014, 144: 161-167 CrossRef Google Scholar

[39] Guo J, Luo Y, Ge F, Ding Y, Fei J. Microchim Acta, 2011, 172: 387-393 CrossRef Google Scholar

[40] Tang L, Chen J, Zeng G, Zhu Y, Zhang Y, Zhou Y, Xie X, Yang G, Zhang S. Electroanalysis, 2014, 26: 2283-2291 CrossRef Google Scholar

[41] Cui L, Wu J, Ju H. ACS Appl Mater Interfaces, 2014, 6: 16210-16216 CrossRef PubMed Google Scholar

[42] Fort CI, Cotet LC, Vulpoi A, Turdean GL, Danciu V, Baia L, Popescu IC. Sensors Actuators B-Chem, 2015, 220: 712-719 CrossRef Google Scholar

[43] Zhang C, Zhou Y, Tang L, Zeng G, Zhang J, Peng B, Xie X, Lai C, Long B, Zhu J. Nanomaterials, 2016, 6: 7 CrossRef Google Scholar

[44] Iijima S. Nature, 1991, 354: 56-58 CrossRef ADS Google Scholar

[45] Song W, Zhang L, Shi L, Li DW, Li Y, Long YT. Microchim Acta, 2010, 169: 321-326 CrossRef Google Scholar

[46] Vu HD, Nguyen LH, Nguyen TD, Nguyen HB, Nguyen TL, Tran DL. Ion, 2015, 21: 571-578 CrossRef Google Scholar

[47] Mensah ST, Gonzalez Y, Calvo-Marzal P, Chumbimuni-Torres KY. Anal Chem, 2014, 86: 7269-7273 CrossRef PubMed Google Scholar

[48] Wardak C. Sensors Actuators B-Chem, 2015, 209: 131-137 CrossRef Google Scholar

[49] Chamjangali MA, Kouhestani H, Masdarolomoor F, Daneshinejad H. Sensors Actuators B-Chem, 2015, 216: 384-393 CrossRef Google Scholar

[50] Fayazi M, Taher MA, Afzali D, Mostafavi A. Sensors Actuators B-Chem, 2016, 228: 1-9 CrossRef Google Scholar

[51] Rico MAG, Olivares-Marín M, Gil EP. Talanta, 2009, 80: 631-635 CrossRef PubMed Google Scholar

[52] Niu P, Fernández-Sánchez C, Gich M, Ayora C, Roig A. Electrochim Acta, 2015, 165: 155-161 CrossRef Google Scholar

[53] Agustini D, Mangrich AS, Bergamini MF, Marcolino-Junior LH. Talanta, 2015, 142: 221-227 CrossRef PubMed Google Scholar

[54] Oliveira PR, Lamy-Mendes AC, Rezende EIP, Mangrich AS, Marcolino Junior LH, Bergamini MF. Food Chem, 2015, 171: 426-431 CrossRef PubMed Google Scholar

[55] Devasenathipathy R, Karthik R, Chen SM, Mani V, Vasantha VS, Ali MA, Elshikh MS, Lou BS, Al-Hemaid FMA. Electroanalysis, 2015, 27: 2341-2346 CrossRef Google Scholar

[56] Tagar ZA, Sirajuddin ZA, Memon N, Kalhoro MS, O’Brien P, Malik MA, Abro MI, Hassan SS, Kalwar NH, Junejo Y. Sensors Actuators B-Chem, 2012, 173: 745-751 CrossRef Google Scholar

[57] Kucukkolbasi1 S, Erdoğan ZÖ, Barek J, Sahin M, Kocak N. Int J Electrochem Sci, 2013, 8: 2164–2181. Google Scholar

[58] Lee PM, Chen Z, Li L, Liu E. Electrochim Acta, 2015, 174: 207-214 CrossRef Google Scholar

[59] Fan HL, Zhou SF, Gao J, Liu YZ. J Alloys Compd, 2016, 671: 354-359 CrossRef Google Scholar

[60] Afkhami A, Sayari S, Soltani-Felehgari F, Madrakian T. J IRAN CHEM SOC, 2015, 12: 257-265 CrossRef Google Scholar

[61] Wang N, Lin M, Dai H, Ma H. Biosens Bioelectron, 2016, 79: 320-326 CrossRef PubMed Google Scholar

[62] Xiong W, Zhou L, Liu S. Chem Eng J, 2016, 284: 650-656 CrossRef Google Scholar

[63] Liu G, Zhang Y, Qi M, Chen F. Anal Methods, 2015, 7: 5619-5626 CrossRef Google Scholar

[64] Bhanjana G, Dilbaghi N, Kumar R, Umar A, Kumar S. Electrochim Acta, 2015, 169: 97-102 CrossRef Google Scholar

[65] Ding H, Liang C, Sun K, Wang H, Hiltunen JK, Chen Z, Shen J. Biosens Bioelectron, 2014, 59: 216-220 CrossRef PubMed Google Scholar

[66] Lin HJ, Chen CY. J Mater Sci, 2016, 51: 1620-1631 CrossRef ADS Google Scholar

[67] Wang Y, Cui Y, Liu R, Gao F, Gao L, Gao X. Sci China Chem, 2015, 58: 819-824 CrossRef Google Scholar

[68] Huang P, Li S, Gao N, Wu F. Analyst, 2015, 140: 7313-7321 CrossRef PubMed ADS Google Scholar

[69] Wang ZX, Guo YX, Ding SN. Microchim Acta, 2015, 182: 2223-2231 CrossRef Google Scholar

[70] Hu X, Wang W, Huang Y. Talanta, 2016, 154: 409-415 CrossRef PubMed Google Scholar

[71] Tang Y, Ding Y, Wu T, Lv L, Yan Z. Sensors Actuators B-Chem, 2016, 228: 767-773 CrossRef Google Scholar

[72] Ding Y, Zhu W, Xu Y, Qian X. Sensors Actuators B-Chem, 2015, 220: 762-771 CrossRef Google Scholar

[73] Mahajan PG, Bhopate DP, Kolekar GB, Patil SR. Sensors Actuators B-Chem, 2015, 220: 864-872 CrossRef Google Scholar

[74] Hu Y, Meng L, Lu Q. Langmuir, 2014, 30: 4458-4464 CrossRef PubMed Google Scholar

[75] Kang H, Lin L, Rong M, Chen X. Talanta, 2014, 129: 296-302 CrossRef PubMed Google Scholar

[76] Brahim NB, Mohamed NBH, Echabaane M, Haouari M, Chaâbane RB, Negrerie M, Ouada HB. Sensors Actuators B-Chem, 2015, 220: 1346-1353 CrossRef Google Scholar

[77] Dasary SSR, Chandra Ray P, Singh AK, Arbneshi T, Yu H, Senapati D. Analyst, 2013, 138: 1195-1203 CrossRef PubMed ADS Google Scholar

[78] She P, Chu Y, Liu C, Guo X, Zhao K, Li J, Du H, Zhang X, Wang H, Deng A. Anal Chim Acta, 2016, 906: 139-147 CrossRef PubMed Google Scholar

[79] Song C, Yang B, Yang Y, Wang L. Sci China Chem, 2016, 59: 16-29 CrossRef Google Scholar

[80] Verma R, Gupta BD. Food Chem, 2015, 166: 568-575 CrossRef PubMed Google Scholar

[81] Kamaruddin NH, Bakar AAA, Yaacob MH, Mahdi MA, Zan MSD, Shaari S. Appl Surface Sci, 2016, 361: 177-184 CrossRef ADS Google Scholar

[82] Fu Q, Liu HL, Wu Z, Liu A, Yao C, Li X, Xiao W, Yu S, Luo Z, Tang Y. J Nanobiotechnol, 2015, 13: 81-89 CrossRef PubMed Google Scholar

[83] Zhao L, Gu W, Zhang C, Shi X, Xian Y. J Colloid Interface Sci, 2016, 465: 279-285 CrossRef PubMed Google Scholar

[84] Raj S, Shankaran DR. Sensors Actuators B-Chem, 2016, 226: 318-325 CrossRef Google Scholar

[85] Li J, Ji C, Hou C, Huo D, Zhang S, Luo X, Yang M, Fa H, Deng B. Sensors Actuators B-Chem, 2016, 223: 853-860 CrossRef Google Scholar

[86] Qu W, Liu Y, Liu D, Wang Z, Jiang X. Angew Chem Int Ed, 2011, 50: 3442-3445 CrossRef PubMed Google Scholar

[87] Qian Q, Deng J, Wang D, Yang L, Yu P, Mao L. Anal Chem, 2012, 84: 9579–9584. Google Scholar

[88] Xu X, Qiao J, Qi L, Wang L, Zhang S. Sci China Chem, 2015, 58: 1065-1072 CrossRef Google Scholar

[89] Huang Y, Xia K, He N, Lu Z, Zhang L, Deng Y, Nie L. Sci China Chem, 2015, 58: 1759-1765 CrossRef Google Scholar

[90] Zhang LM, Xia K, Bai YY, Lu ZX, Tang YJ, Deng Y, Chen J, Qian WP, Shen H, Zhang ZJ, Ju SH, He NY. J Biomed Nanotechnol, 2014, 10, 1440–1449. Google Scholar

[91] Zhang LM, Xia K, Lu ZX, Li GP, Chen J, Deng Y, Li S, Zhou FM, He NY. Chem Mater 2014, 26: 1794–1798. Google Scholar

[92] Yue G, Su S, Li N, Shuai M, Lai X, Astruc D, Zhao P. Coord Chem Rev, 2016, 311: 75-84 CrossRef Google Scholar

[93] Manjumeena R, Duraibabu D, Rajamuthuramalingam T, Venkatesan R, Kalaichelvan PT. RSC Adv, 2015, 5: 69124-69133 CrossRef Google Scholar

[94] de L. M. de Morais C, Carvalho JC, Sant'Anna C, Eugênio M, Gasparotto LHS, Lima KMG. Anal Methods, 2015, 7: 7917-7922 CrossRef Google Scholar

[95] Kumar VV, Anthony SP. Sensors Actuators B-Chem, 2016, 225: 413-419 CrossRef Google Scholar

[96] Wang YW, Tang S, Yang HH, Song H. Talanta, 2016, 146: 71-74 CrossRef PubMed Google Scholar

[97] Thatai S, Khurana P, Prasad S, Kumar D. Talanta, 2015, 134: 568-575 CrossRef PubMed Google Scholar

[98] Thatai S, Khurana P, Prasad S, Soni SK, Kumar D. Microchemical J, 2016, 124: 104-110 CrossRef Google Scholar

[99] Zhang Y, Zhao Y, Yang Y, Shen J, Yang H, Zhou Z, Yang S. Sensors Actuators B-Chem, 2015, 220: 622-626 CrossRef Google Scholar

[100] Jin W, Huang P, Wu F, Ma LH. Analyst, 2015, 140: 3507-3513 CrossRef PubMed ADS Google Scholar

[101] Wang Z, Wang H, Zhang Z, Liu G. Sensors Actuators B-Chem, 2014, 199: 7-14 CrossRef Google Scholar

[102] Niu P, Fernández-Sánchez C, Gich M, Ayora C, Roig A. Microchim Acta, 2015: 1–7. Google Scholar

[103] Deng Y, Wang W, Ma C, Li Z. J Biomedical Nanotechnology, 2013, 9: 1378-1382 CrossRef Google Scholar

[104] Deng Y, Wang W, Zhang L, Lu Z, Li S, Xu L. j biomed nanotechnol, 2013, 9: 318-321 CrossRef Google Scholar

  • Figure 1

    Basic principle of AuNPs based colorimetric biosensors [24] (color online).

  • Figure 2

    (a) The TEM image of SnO2/graphene nanocomposite; (b) square wave anodic stripping voltammetry (SWASV) response for the simultaneous analysis of Cd(II), Pb(II), Cu(II), and Hg(II) over a concentration range of 0 to 1.3 μM for each metal ions. From bottom to top: 0, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, and 1.2 μM [29].

  • Figure 3

    Analytical performance. (A) SWASV responses of the IL-N@MOG-C modified GCE to Cd(II) at concentrations of 0 (a), 0.025 (b), 0.05 (c), 0.075 (d), 0.1 (e), 0.25 (f), 0.5 (g), 0.75 (h), 1.0 (i), 2.5 (g) and 5.0 μM (k); the inert is the detail with enlarged scale, from (a) to (f) are the current responses of Cd(II) at concentrations of 0–0.25 μM. (B) The corresponding calibration curve; the inset is the corresponding calibration curve at the Cd(II) concentrations of 0–0.6 μM [41] (color online).

  • Figure 4

    UV-Vis spectra (inset: photograph) (a) and fluorescence spectra (inset: fluorescence images) (b) of solid TPP-PZS suspension (10 mg/L) in the absence and the presence of different metal ions (10 μM) [74] (color online).

  • Table 1   A summary of few developments of different kinds of EC sensor for heavy metal ions

    Electrods

    Linear range

    Detection limit

    Ref.

    graphene/polyaniline/polystyrene (G/PANI/PS) nanoporous fiber/SPCE

    10–500 μg/L

    Cd(II): 4.43 μg/L

    Pb(II): 3.3 μg/L

    [32]

    graphene oxide doped diaminoterthiophene (GO/DTT)/Nafion/SPCE

    1–2500 ng/L

    Cd(II): 7.1 ng/L

    Pb(II): 1.9 ng/L

    Hg(II): 0.7 ng/L

    [33]

    BiNRs/SPCE

    1–50 μg/L

    Cd(II): 0.145 μg/L

    Pb(II): 0.104 μg/L

    [55]

    BiNPs/SPCE

    0.9–4.9 ng/mL

    Cd(II): 1.3 ng/mL

    Pb(II): 0.9 ng/mL

    (Flow cell)

    [51]

    multi-walled carbon nanotubes and chitosan (MWCNTs-CHIT)/SPCE

    Cd(II): 12 nM

    Pb(II): 23 nM

    [45]

    NGP-Nafion/GCE

    0.25–5 μg/L

    Cd(II): 3.5 ng/L

    [30]

    multiwall carbon nanotube (MWCNT)/GCE

    10–250 μg/L

    Cd(II): 25 ng/L

    [31]

    multi-walled carbon nanotube poly composite and bismuth film (MWCN/poly(PCV)/Bi)/GCE

    1–300 μg/L

    1–200 μg/L

    Cd(II): 0.20 μg/L

    Pb(II): 0.40 μg/L

    [49]

    amino-functionalized mesoporous silica (NH2-MCM-41)/GCE

    5–1000 ng/L

    50–450 μg/L

    0.5–250 μg/L

    Cu(II): 0.9 ng/L

    Cd(II): 1.0 μg/L

    Pb(II): 0.2 μg/L

    [37,38]

    liquid phase-exfoliated graphene nanosheets/GCE

    Cd(II): 1.08 μg/L

    Pb(II): 1.82 μg/L

    [31]

    mesoporous carbon, 2-mercaptoethanesulfonate tethered polyaniline and bismuth (Bi/PANI-MES/OMC)/GCE

    1–120 nM

    Cd(II): 0.26 nM

    Pb(II): 0.16 nM

    [40]

    Ibuprofen capped HgNPs (Ibu-HgNPs)/GCE

    0.1–600 ppb

    Cd(II): 0.042 ppb

    Pb(II): 0.03 ppb

    [56]

    biochar/CPE

    1.5×10–6–3.1×10–5M

    4.0×10–7 M

    [54]

    biochar and bismuth nanostructures (nBi-Bch)/CPE

    5.0–1000 nM

    Pb(II): 1.41 nM

    [53]

    hexagonal mesoporous silicaim mobilized quercetin(HMSQu)/CPE

    0.02–6.0 μM

    0.004–2.0 μM

    0.01–8.0 μM

    Cu(II): 5.0 nM

    Cd(II): 1.0 nM

    Pb(II): 0.8 nM

    [36]

    chitosan NP-Schiff base (CNSB)/CPE

    10–6–10–4 M

    Pb(II): 7.24×10–7 M

    [57]

    bismuth nanoparticle-porous/CPE

    1–100 ppb

    Cd(II): 0.81 ppb

    Pb(II): 0.65 ppb

    [52]

    Ni-Zn-Fe2O4/CPE

    0.10–100.00 μM

    0.20–100.00 μM

    Cd(II): 0.01 μM

    Hg(II): 0.04 μM

    [60]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1