logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 990-996(2017) https://doi.org/10.1007/s11426-016-0376-3

Green and efficient cycloaddition of CO2 toward epoxides over thiamine derivatives/GO aerogels under mild and solvent-free conditions

More info
  • ReceivedSep 11, 2016
  • AcceptedOct 29, 2016
  • PublishedNov 28, 2016

Abstract

Thiamine derivatives that are cheap, readily available, non-toxic and green are used as heterogeneous catalyst for the generation of cyclic carbonates through cycloaddition of CO2 to epoxides without the need of co-catalyst and solvent. The interaction between thiamine hydrochloride (VB1-Cl) and substrates (CO2 and propylene oxide) was proven by ultraviolet-visible spectroscopy and 1H nuclear magnetic resonance analysis, and it is deduced that the synergistic action among multi-functional groups (hydroxyl, halide anion and amine) is a favorable factor for cycloaddition reaction. A series of VB1/GO aerogels were facilely prepared through the addition of aqueous VB1 derivatives to a suspension of GO in ethanol at room temperature. It was found that the aerogel generated through the interaction of VB1-Cl with GO shows catalytic activity and stability higher than those of VB1-Cl. It is because the electrostatic interaction between GO and VB1-Cl enhances the nucleophilicity and leaving ability of anion. The effects of reaction temperature, catalyst loading, CO2 pressure and reaction time on CO2 cycloaddition to propylene oxide were thoroughly studied.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Lacis AA, Schmidt GA, Rind D, Ruedy RA. Science, 2010, 330: 356-359 CrossRef PubMed ADS Google Scholar

[2] Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J. Energ Environ Sci, 2013, 6: 3112-3135 CrossRef Google Scholar

[3] Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem Rev, 2015, 115: 12936-12973 CrossRef PubMed Google Scholar

[4] Sakakura T, Choi JC, Yasuda H. Chem Rev, 2007, 107: 2365-2387 CrossRef PubMed Google Scholar

[5] Aresta M, Dibenedetto A, Angelini A. Chem Rev, 2014, 114: 1709-1742 CrossRef PubMed Google Scholar

[6] Liu M, Gao K, Liang L, Sun J, Sheng L, Arai M. Catal Sci Technol, 2016, 6: 6406-6416 CrossRef Google Scholar

[7] Liu M, Liu B, Zhong S, Shi L, Liang L, Sun J. Ind Eng Chem Res, 2015, 54: 633-640 CrossRef Google Scholar

[8] Liu M, Gao K, Liang L, Wang F, Shi L, Sheng L, Sun J. Phys Chem Chem Phys, 2015, 17: 5959-5965 CrossRef PubMed ADS Google Scholar

[9] Kohrt C, Werner T. ChemSusChem, 2015, 8: 2031-2034 CrossRef PubMed Google Scholar

[10] Jiang X, Gou F, Chen F, Jing H. Green Chem, 2016, 18: 3567-3576 CrossRef Google Scholar

[11] Maeda C, Taniguchi T, Ogawa K, Ema T. Angew Chem, 2015, 127: 136-140 CrossRef Google Scholar

[12] Chen A, Zhao T, Gao H, Chen L, Chen J, Yu Y. Catal Sci Technol, 2016, 6: 780-790 CrossRef Google Scholar

[13] D’Elia V, Dong H, Rossini AJ, Widdifield CM, Vummaleti SVC, Minenkov Y, Poater A, Abou-Hamad E, Pelletier JDA, Cavallo L, Emsley L, Basset JM. J Am Chem Soc, 2015, 137: 7728-7739 CrossRef PubMed Google Scholar

[14] Li PZ, Wang XJ, Liu J, Lim JS, Zou R, Zhao Y. J Am Chem Soc, 2016, 138: 2142-2145 CrossRef PubMed Google Scholar

[15] Lan DH, Yang FM, Luo SL, Au CT, Yin SF. Carbon, 2014, 73: 351-360 CrossRef Google Scholar

[16] Fiorani G, Guo W, Kleij AW. Green Chem, 2015, 17: 1375-1389 CrossRef Google Scholar

[17] Izatt RM, Izatt SR, Bruening RL, Izatt NE, Moyer BA. Chem Soc Rev, 2014, 43: 2451-2475 CrossRef PubMed Google Scholar

[18] Liu J, Lei M, Hu L. Green Chem, 2012, 14: 840-846 CrossRef Google Scholar

[19] Hollóczki O, Kelemen Z, Nyulászi L. J Org Chem, 2012, 77: 6014-6022 CrossRef PubMed Google Scholar

[20] Lu T, Li X, Gu L, Zhang Y. ChemSusChem, 2014, 7: 2423-2426 CrossRef PubMed Google Scholar

[21] Lan DH, Wang HT, Chen L, Au CT, Yin SF. Carbon, 2016, 100: 81-89 CrossRef Google Scholar

[22] Lan DH, Chen L, Au CT, Yin SF. Carbon, 2015, 93: 22-31 CrossRef Google Scholar

[23] Lan DH, Au CT, Yin SF. Curr Green Chem, 2015, 2: 35-42 CrossRef Google Scholar

[24] Lan DH, Fan N, Wang Y, Gao X, Zhang P, Chen L, Au CT, Yin SF. Chin J Catal, 2016, 37: 826-845 CrossRef Google Scholar

[25] Nesbitt P, Sykes P. J Chem Soc, 1954, : 4585-4587 CrossRef Google Scholar

[26] Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y. Carbon, 2015, 95: 1039-1050 CrossRef Google Scholar

[27] Cong HP, Chen JF, Yu SH. Chem Soc Rev, 2014, 43: 7295-7325 CrossRef PubMed Google Scholar

[28] Yeh CN, Raidongia K, Shao J, Yang QH, Huang J. Nat Chem, 2015, 7: 166-170 CrossRef PubMed ADS Google Scholar

[29] Dreyer DR, Park S, Bielawski CW, Ruoff RS. Chem Soc Rev, 2010, 39: 228-240 CrossRef PubMed Google Scholar

[30] Orita Y, Kawashima Y, Hirota E. J Mol Spectrosc, 2011, 268: 78-84 CrossRef ADS Google Scholar

[31] He GY, Wang JC, Hou JH, Sun XQ, Chen HQ. Sci Sin Chim, 2015, 45: 186 CrossRef Google Scholar

[32] Liu M, Liang L, Li X, Gao X, Sun J. Green Chem, 2016, 18: 2851-2863 CrossRef Google Scholar

[33] Yang ZZ, Zhao Y, Ji G, Zhang H, Yu B, Gao X, Liu Z. Green Chem, 2014, 16: 3724-3728 CrossRef Google Scholar

[34] Deng Q, He G, Pan Y, Ruan X, Zheng W, Yan X. RSC Adv, 2016, 6: 2217-2224 CrossRef Google Scholar

[35] Chen JX, Jin B, Dai WL, Deng SL, Cao LR, Cao ZJ, Luo SL, Luo XB, Tu XM, Au CT. Appl Catal A-Gen, 2014, 484: 26-32 CrossRef Google Scholar

[36] Luo R, Zhou X, Zhang W, Liang Z, Jiang J, Ji H. Green Chem, 2014, 16: 4179-4189 CrossRef Google Scholar

[37] Zhang Y, Yin S, Luo S, Au CT. Ind Eng Chem Res, 2012, 51: 3951-3957 CrossRef Google Scholar

[38] Dai WL, Chen L, Yin SF, Li WH, Zhang YY, Luo SL, Au CT. Catal Lett, 2010, 137: 74-80 CrossRef Google Scholar

[39] Luo R, Zhou X, Chen S, Li Y, Zhou L, Ji H. Green Chem, 2014, 16: 1496-1506 CrossRef Google Scholar

[40] Dai WL, Chen L, Yin SF, Luo SL, Au CT. Catal Lett, 2010, 135: 295-304 CrossRef Google Scholar

[41] Zhang YY, Chen L, Yin SF, Luo SL, Au CT. Catal Lett, 2012, 142: 1376-1381 CrossRef Google Scholar

[42] Luo R, Zhou X, Fang Y, Ji H. Carbon, 2015, 82: 1-11 CrossRef Google Scholar

[43] Wang YB, Sun DS, Zhou H, Zhang WZ, Lu XB. Green Chem, 2015, 17: 4009-4015 CrossRef Google Scholar

[44] Roshan KR, Palissery RA, Kathalikkattil AC, Babu R, Mathai G, Lee HS, Park DW. Catal Sci Technol, 2016, 6: 3997-4004 CrossRef Google Scholar

[45] Prasetyanto EA, Ansari MB, Min BH, Park SE. Catal Today, 2010, 158: 252-257 CrossRef Google Scholar

  • Figure 1

    Structure of VB1 derivative VB1-X (X=Cl, Br, I).

  • Figure 2

    Photographs of (a) GO dispersion in EtOH (2 mg/mL GO); (b) VB1-Cl/GO aerogel; (c) VB1-Cl/GO aerogel inverted (color online).

  • Figure 3

    Generation of VB1-X/GO (X=Cl, Br, I) (color online).

  • Figure 4

    SEM images of GO and VB1-Cl/GO.

  • Figure 5

    TG curve of GO, VB1-Cl and VB1-Cl/GO (color online).

  • Figure 6

    1H NMR spectra of (a) PO, (b) VB1-Cl, (c) PO and VB1-Cl.

  • Figure 7

    UV-Vis DRS spectra of aqueous VB1-Cl solution (8 mg/L) (a) before and (b) after bubbling CO2 for 0.5 h.

  • Figure 8

    Possible reaction mechanism over VB1-Cl.

  • Table 1   The catalytic activity of VB-Cl for cycloaddition of CO toward PO

    Entry

    T (°C)

    t (h)

    Yield (%)

    Selectivity (%)

    1

    100

    6

    24.7

    99.9

    2

    100

    14

    83.3

    99.9

    3

    110

    6

    38.1

    99.9

    4

    120

    6

    99.4

    99.9

    5

    120

    4

    77.6

    99.9

    6 b)

    120

    4

    55.4

    99.3

    7 c)

    120

    4

    51.9

    99.8

    8 d)

    120

    4

    1.3

    99.9

    9 e)

    120

    4

    84.6

    99.8

    10 f)

    120

    4

    85.3

    99.8

    Reaction conditions: 28.6 mmol PO with 2.2 mol% VB1-Cl, initial CO2 pressure 2 MPa; b) recovered VB1-Cl after the second cycle; c) 28.6 mmol PO with 2.2 mol% VB1-Cl was stirred at 120 °C for 2 h, then pressurized with CO2 and stirred at 120 °C for 4 h; d) using 80 mg of GO as catalyst; e) using 80 mg of GO and 2.2 mol% VB1-Cl as catalyst; f) using VB1-Cl/GO (containing 80 mg of GO and 2.2 mol% VB1-Cl) as catalyst.

  • Table 2   The catalytic activity of VB derivatives for cycloaddition of CO toward PO

    Entry

    Catalysts

    VB1 derivatives (mol%)

    GO (mg)

    Yield (%)

    Selectivity (%)

    1

    VB1-Cl

    2.2

    24.7

    99.9

    2

    VB1-Br

    2.2

    50.6

    99.5

    3

    VB1-I

    2.2

    86.8

    99.3

    4 b)

    VB1-I

    1.1

    41.5

    99.4

    5 b)

    VB1-I/GO

    1.1

    80

    69.3

    99.5

    6 b)

    VB1-I/GO

    1.1

    160

    93.2

    99.5

    7 b)

    VB1-I/GO

    2.2

    80

    92.3

    99.5

    Reaction conditions: 28.6 mmol PO, 100 °C, initial CO2 pressure 2 MPa, 6 h; b) reaction temperature 90 °C.

  • Table 3   Catalytic performance of various heterogeneous catalysts for cycloaddition of CO to PO

    Catalyst

    T (°C)

    t (h)

    Cat. (mol%)

    Yield (%)

    TOF a) (h–1)

    F-PIL-Br

    120

    9

    1

    94.0

    10.4 [33]

    [BisAm-OH-i-PS]I2

    130

    2.5

    0.75

    99.3

    53 [34]

    [BisAm-OH-i-PS]I2

    90

    2.5

    0.75

    21.0

    11.2 [34]

    CS-[BuPh3P]Br

    120

    4

    1.5

    96.3

    16.0 [35]

    CS-[BuPh3P]Br

    90

    4

    1.5

    63.0

    10.5 [35]

    GO-DMEDA-I

    120

    3

    0.65

    89.4

    45.8 [22]

    GO-DMEDA-I

    90

    6

    0.65

    51.6

    13.2 [22]

    SiO2-(CH2)3(EtOH)3N+I

    90

    6

    2

    86.0

    7.2 [9]

    VB1-I/GO

    90

    6

    1.1

    93.2

    14.1 b)

    TOF=mole of synthesized propylene carbonate over per mole ILs in per hour; b) this work.

  • Table 4   Catalytic activity of VB-I/GO for CO cycloaddition toward various epoxides

    Entry

    Substrate

    Yield (%)

    Selectivity (%)

    1

    Ethylene oxide

    95.4

    99.2

    2

    Propylene oxide

    93.2

    99.5

    3

    Epichlorohydrin

    96.5

    97.9

    4

    1,2-Epoxybutane

    76.1

    98.6

    5

    Styrene oxide

    59.2

    98.9

    6

    Cyclohexene oxide

    6.3

    93.8

    Reaction conditions: 0.3 g VB1-I/GO, 28.6 mmol epoxide, temperature 90 °C, initial CO2 pressure 2 MPa, time 6 h.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1