logo

SCIENCE CHINA Chemistry, Volume 60, Issue 2: 201-213(2017) https://doi.org/10.1007/s11426-016-0381-1

Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions

More info
  • ReceivedSep 14, 2016
  • AcceptedNov 3, 2016
  • PublishedDec 27, 2016

Abstract

Solid phase peptide synthesis (SPPS) based on Fmoc chemistry has become a commonly used technique in peptide chemistry, as it can be easily conducted using automated machine, and not requiring highly toxic HF in comparison to Boc-SPPS. With the fast development in the emerging field of protein chemical synthesis, many efforts have been endeavored aiming to find more efficient methods for preparing peptide fragments required in ligation reactions. This review briefly summarizes recent advances in the engineering and modification of Fmoc-SPPS-derived peptides, which can be used as the N-terminal fragments in a native chemical ligation (NCL) or NCL-type ligation reactions.


Funded by

Peking University Health Science Center(BMU20130354)

State Key Laboratory of Natural and Biomimetic Drugs

National Recruitment Program of Global Youth Experts(1000 Plan)

National Natural Science Foundation of China(21502005)


Acknowledgment

This work was supported by the Peking University Health Science Center (BMU20130354), State Key Laboratory of Natural and Biomimetic Drugs, the National Recruitment Program of Global Youth Experts (1000 Plan), and the National Natural Science Foundation of China (21502005).


Interest statement

The authors declare no conflict of interest.


References

[1] Dawson PE, Muir TW, Clark-Lewis I, Kent SBH. Science, 1994, 266: 776-779 CrossRef ADS Google Scholar

[2] Merrifield RB. J Am Chem Soc, 1963, 85: 2149-2154 CrossRef Google Scholar

[3] Li X, Kawakami T, Aimoto S, Clippingdale AB, Barrow CJ, Wade JD, Bu X, Xie G, Law CW, Guo Z, Hasegawa K, Sha YL, Bang JK, Kawakami T, Akaji K, Aimoto S. Tetrahedron Lett, 1998, 39: 8669-8672 CrossRef Google Scholar

[4] Raz R, Rademann J. Org Lett, 2011, 13: 1606-1609 CrossRef PubMed Google Scholar

[5] Ingenito R, Bianchi E, Fattori D, Pessi A, Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR, Burlina F, Morris C, Behrendt R, White P, Offer J. J Am Chem Soc, 1999, 121: 11369-11374 CrossRef Google Scholar

[6] Mende F, Seitz O, Zheng JS, Tang S, Huang YC, Liu L, Thomas F, Kawakami T, Melnyk O, Agouridas V, Huang YC, Fang GM, Liu L, Huang Y, Liu L, Pedersen SL, Jensen K. Angew Chem Int Ed, 2011, 50: 1232-1240 CrossRef PubMed Google Scholar

[7] Jones JH, Witty MJ. J Chem Soc Perkin Trans 1, 1979, : 3203 CrossRef Google Scholar

[8] Sakakibara S. Biopolymers, 1995, 37: 17-28 CrossRef PubMed Google Scholar

[9] von Eggelkraut-Gottanka R, Klose A, Beck-Sickinger AG, Beyermann M. Tetrahedron Lett, 2003, 44: 3551-3554 CrossRef Google Scholar

[10] Flemer Jr S. J Pept Sci, 2009, 15: 693-696 CrossRef PubMed Google Scholar

[11] Mezo AR, Cheng RP, Imperiali B. J Am Chem Soc, 2001, 123: 3885-3891 CrossRef Google Scholar

[12] Kajihara Y, Yoshihara A, Hirano K, Yamamoto N. Carbohyd Res, 2006, 341: 1333-1340 CrossRef PubMed Google Scholar

[13] Nagalingam A, Radford S, Warriner S. Synlett, 2007, 2007: 2517-2520 CrossRef Google Scholar

[14] Williams MW, Young GT. J Chem Soc, 1963, : 881 CrossRef Google Scholar

[15] Barlos K, Gatos D. Biopolymers, 1999, 51: 266-278 CrossRef Google Scholar

[16] Heinlein C, Varón Silva D, Tröster A, Schmidt J, Gross A, Unverzagt C. Angew Chem Int Ed, 2011, 50: 6406-6410 CrossRef PubMed Google Scholar

[17] Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H, Ding H, Shigenaga A, Sato K, Morishita K, Otaka A, Aussedat B, Fasching B, Johnston E, Sane N, Nagorny P, Danishefsky SJ, Fernández-Tejada A, Vadola PA, Danishefsky SJ. Angew Chem Int Ed, 2015, 54: 8226-8230 CrossRef PubMed Google Scholar

[18] Hackeng TM, Griffin JH, Dawson PE, Pollock SB, Kent SBH. Proc Natl Acad Sci USA, 1999, 96: 10068-10073 CrossRef Google Scholar

[19] Bodanszky M. Nature, 1955, 175: 685. Google Scholar

[20] Wan Q, Chen J, Yuan Y, Danishefsky SJ. J Am Chem Soc, 2008, 130: 15814-15816 CrossRef PubMed Google Scholar

[21] Durek T, Alewood PF. Angew Chem Int Ed, 2011, 50: 12042-12045 CrossRef PubMed Google Scholar

[22] Raibaut L, Seeberger P, Melnyk O. Org Lett, 2013, 15: 5516-5519 CrossRef PubMed Google Scholar

[23] Nakamura T, Shigenaga A, Sato K, Tsuda Y, Sakamoto K, Otaka A. Chem Commun, 2014, 50: 58-60 CrossRef PubMed Google Scholar

[24] Nakamura T, Sato K, Naruse N, Kitakaze K, Inokuma T, Hirokawa T, Shigenaga A, Itoh K, Otaka A. ChemBioChem, 2016, 17: 1986-1992 CrossRef PubMed Google Scholar

[25] Hinderaker MP, Raines RT, Hodges JA, Raines RT, Choudhary A, Kamer KJ, Powner MW, Sutherland JD, Raines RT. Protein Sci, 2003, 12: 1188-1194 CrossRef PubMed Google Scholar

[26] Gui Y, Qiu L, Li Y, Li H, Dong S. J Am Chem Soc, 2016, 138: 4890-4899 CrossRef PubMed Google Scholar

[27] Wan Q, Danishefsky SJ. Angew Chem Int Ed, 2007, 46: 9248-9252 CrossRef PubMed Google Scholar

[28] Ali Shah MI, Xu ZY, Liu L, Jiang YY, Shi J. RSC Adv, 2016, 6: 68312-68321 CrossRef Google Scholar

[29] Botti P, Villain M, Manganiello S, Gaertner H. Org Lett, 2004, 6: 4861-4864 CrossRef PubMed Google Scholar

[30] George EA, Novick RP, Muir TW. J Am Chem Soc, 2008, 130: 4914-4924 CrossRef PubMed Google Scholar

[31] Liu F, Mayer JP. J Org Chem, 2013, 78: 9848-9856 CrossRef PubMed Google Scholar

[32] Warren JD, Miller JS, Keding SJ, Danishefsky SJ. J Am Chem Soc, 2004, 126: 6576-6578 CrossRef PubMed Google Scholar

[33] Zheng JS, Cui HK, Fang GM, Xi WX, Liu L, Fang GM, Cui HK, Zheng JS, Liu L. ChemBioChem, 2010, 11: 511-515 CrossRef PubMed Google Scholar

[34] Hojo H, Onuma Y, Akimoto Y, Nakahara Y, Nakahara Y. Tetrahedron Lett, 2007, 48: 25-28 CrossRef Google Scholar

[35] Asahina Y, Nabeshima K, Hojo H. Tetrahedron Lett, 2015, 56: 1370-1373 CrossRef Google Scholar

[36] Terrier VP, Adihou H, Arnould M, Delmas AF, Aucagne V. Chem Sci, 2016, 7: 339-345 CrossRef Google Scholar

[37] Shah NH, Muir TW. Chem Sci, 2014, 5: 446-461 CrossRef PubMed Google Scholar

[38] Ollivier N, Dheur J, Mhidia R, Blanpain A, Melnyk O, Hou W, Zhang X, Li F, Liu CF. Org Lett, 2010, 12: 5238-5241 CrossRef PubMed Google Scholar

[39] Ollivier N, Vicogne J, Vallin A, Drobecq H, Desmet R, El Mahdi O, Leclercq B, Goormachtigh G, Fafeur V, Melnyk O. Angew Chem Int Ed, 2012, 51: 209-213 CrossRef PubMed Google Scholar

[40] Raibaut L, Drobecq H, Melnyk O, Raibaut L, Cargoët M, Ollivier N, Chang YM, Drobecq H, Boll E, Desmet R, Monbaliu JCM, Melnyk O. Org Lett, 2015, 17: 3636-3639 CrossRef PubMed Google Scholar

[41] Zheng JS, Chang HN, Wang FL, Liu L. J Am Chem Soc, 2011, 133: 11080-11083 CrossRef PubMed Google Scholar

[42] Zheng JS, Chen X, Tang S, Chang HN, Wang FL, Zuo C. Org Lett, 2014, 16: 4908-4911 CrossRef PubMed Google Scholar

[43] Otaka A, Sato K, Shigenaga A. Protein ligation and total synthesis II. In: Liu L, Ed. Chemical Synthesis of Proteins Using N-sulfanylethylanilide Peptides, Based on N−S Acyl Transfer Chemistry. Switzerland: Springer International Publishing, 2014. 33–56. Google Scholar

[44] Tsuda S, Shigenaga A, Bando K, Otaka A. Org Lett, 2009, 11: 823-826 CrossRef PubMed Google Scholar

[45] Eto M, Naruse N, Morimoto K, Yamaoka K, Sato K, Tsuji K, Inokuma T, Shigenaga A, Otaka A. Org Lett, 2016, 18: 4416-4419 CrossRef PubMed Google Scholar

[46] Aihara K, Yamaoka K, Naruse N, Inokuma T, Shigenaga A, Otaka A. Org Lett, 2016, 18: 596-599 CrossRef PubMed Google Scholar

[47] Zacharie B, Sauvé G, Penney C, Pascal R, Chauvey D, Sola R. Tetrahedron, 1993, 49: 10489-10500 CrossRef Google Scholar

[48] Blanco-Canosa JB, Dawson PE. Angew Chem Int Ed, 2008, 47: 6851-6855 CrossRef PubMed Google Scholar

[49] Tiefenbrunn TK, Blanco-Canosa J, Dawson PE, Siman P, Blatt O, Moyal T, Danieli T, Lebendiker M, Lashuel HA, Friedler A, Brik A, Fauvet B, Butterfield SM, Fuks J, Brik A, Lashuel HA, Okamoto R, Mandal K, Sawaya MR, Kajihara Y, Yeates TO, Kent SBH. Biopolymers, 2010, 94: 405-413 CrossRef PubMed Google Scholar

[50] White PD, Behrendt R. J Pep Sci, 2010, 16: 71–72. Google Scholar

[51] Mahto SK, Howard CJ, Shimko JC, Ottesen JJ. ChemBioChem, 2011, 12: 2488-2494 CrossRef PubMed Google Scholar

[52] Shimko JC, North JA, Bruns AN, Poirier MG, Ottesen JJ. J Mol Biol, 2011, 408: 187-204 CrossRef PubMed Google Scholar

[53] Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE. J Am Chem Soc, 2015, 137: 7197-7209 CrossRef PubMed Google Scholar

[54] Wang JX, Fang GM, He Y, Qu DL, Yu M, Hong ZY, Liu L. Angew Chem Int Ed, 2015, 54: 2194-2198 CrossRef PubMed Google Scholar

[55] Sato T, Saito Y, Aimoto S, Johnson ECB, Kent SBH. J Peptide Sci, 2005, 11: 410-416 CrossRef PubMed Google Scholar

[56] Bang D, Kent SBH, Gordon WR, Bang D, Hoff WD, Kent SBH. Proc Natl Acad Sci USA, 2005, 102: 5014-5019 CrossRef PubMed ADS Google Scholar

[57] Curtius T, Yanaihara N, Yanaihara C, Dupuis G, Beacham J, Camble R, Hofmann K, Felix AM, Merrifield RB, Romovacek H, Dowd SR, Kawasaki K, Nishi N, Hofmann K. J Prakt Chem, 1904, 70: 57-72 CrossRef Google Scholar

[58] Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L, Fang GM, Wang JX, Liu L, Zheng JS, Tang S, Qi YK, Wang ZP, Liu L, Tang S, Si YY, Wang ZP, Mei KR, Chen X, Cheng JY, Zheng JS, Liu L. Angew Chem Int Ed, 2011, 50: 7645-7649 CrossRef PubMed Google Scholar

[59] Li YM, Yang MY, Huang YC, Li YT, Chen PR, Liu L, Reif A, Siebenhaar S, Tröster A, Schmälzlein M, Lechner C, Velisetty P, Gottwald K, Pöhner C, Boos I, Schubert V, Rose-John S, Unverzagt C, Chang HN, Liu BY, Qi YK, Zhou Y, Chen YP, Pan KM, Li WW, Zhou XM, Ma WW, Fu CY, Qi YM, Liu L, Gao YF, Murakami M, Kiuchi T, Nishihara M, Tezuka K, Okamoto R, Izumi M, Kajihara Y. ACS Chem Biol, 2012, 7: 1015-1022 CrossRef PubMed Google Scholar

[60] Tsuda Y, Shigenaga A, Tsuji K, Denda M, Sato K, Kitakaze K, Nakamura T, Inokuma T, Itoh K, Otaka A, Miyajima R, Tsuda Y, Inokuma T, Shigenaga A, Imanishi M, Futaki S, Otaka A. ChemOpen, 2015, 4: 448-452 CrossRef PubMed Google Scholar

[61] Sharma I, Crich D. J Org Chem, 2011, 76: 6518-6524 CrossRef PubMed Google Scholar

[62] Hogenauer TJ, Wang Q, Sanki AK, Gammon AJ, Chu CHL, Kaneshiro CM, Kajihara Y, Michael K. Org Biomol Chem, 2007, 5: 759-762 CrossRef PubMed Google Scholar

[63] Pardo A, Hogenauer TJ, Cai Z, Vellucci JA, Castillo EM, Dirk CW, Franz AH, Michael K. ChemBioChem, 2015, 16: 1884-1889 CrossRef PubMed Google Scholar

[64] Muir TW, Sondhi D, Cole PA. Proc Natl Acad Sci USA, 1998, 95: 6705-6710 CrossRef Google Scholar

[65] Okamoto R, Morooka K, Kajihara Y. Angew Chem Int Ed, 2012, 51: 191-196 CrossRef PubMed Google Scholar

[66] Okamoto R, Isoe M, Izumi M, Kajihara Y. J Pept Sci, 2016, 22: 343-351 CrossRef PubMed Google Scholar

[67] Okamoto R, Kimura M, Ishimizu T, Izumi M, Kajihara Y. Chem Eur J, 2014, 20: 10425-10430 CrossRef PubMed Google Scholar

[68] Kenner GW, McDermott JR, Sheppard RC. J Chem Soc D, 1971, : 636 CrossRef Google Scholar

[69] Elashal HE, Sim YE, Raj M. Chem Sci, 2016, doi: 10.1039/C6SC02162J. Google Scholar

[70] van Berkel SS, van Eldijk MB, van Hest JCM. Angew Chem Int Ed, 2011, 50: 8806-8827 CrossRef PubMed Google Scholar

[71] Lee CL, Li X. Curr Opin Chem Biol, 2014, 22: 108-114 CrossRef PubMed Google Scholar

[72] Rohrbacher F, Wucherpfennig TG, Bode JW, Harmand TJ, Murar CE, Bode JW. Protein ligation and total synthesis II. In: Liu L, Ed. Chemical Protein Synthesis with the KAHA Ligation. Switzerland: Springer International Publishing, 2015. 1–31. Google Scholar

[73] Thuaud F, Rohrbacher F, Zwicky A, Bode JW. Helv Chim Acta, 2016, 99: 868-894 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1