logo

SCIENCE CHINA Chemistry, Volume 60, Issue 2: 214-222(2017) https://doi.org/10.1007/s11426-016-0399-5

Recent advances in radical-mediated fluorination through C–H and C–C bond cleavage

More info
  • ReceivedSep 30, 2016
  • AcceptedNov 8, 2016
  • PublishedDec 14, 2016

Abstract

The C–H and C–C bonds are abundant in organic compounds, yet generally inert in chemical transformations. Therefore, direct functionalization of inert chemical bonds remains challenging. The fluorine-containing compounds are of special interest for their uses in medicinal chemistry. Direct fluorination of C–H and C–C bonds undoubtedly represents one of the most ideal and attractive approaches to incorporate fluorine atom into complex molecules. Herein, we summarize the recent advances in radical-mediated C–H and C–C bond fluorination. Three types of transformations are discussed: (1) direct C–H abstraction/fluorination of alkanes; (2) decarboxylative fluorination of alkyl carboxylic acids; (3) ring-opening fluorination.


Funded by

Soochow University

National Natural Science Foundation of China(21402134)

Natural Science Foundation of Jiangsu Province(BK20140306)

and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


Acknowledgment

This work was supported by Soochow University, the National Natural Science Foundation of China (21402134), the Natural Science Foundation of Jiangsu Province (BK20140306), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881-1886 CrossRef PubMed ADS Google Scholar

[2] Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320-330 CrossRef PubMed Google Scholar

[3] Jeschke P. ChemBioChem, 2004, 5: 570-589 CrossRef PubMed Google Scholar

[4] Kannan AG, Choudhury NR, Dutta N. ACS Appl Mater Interfaces, 2009, 1: 336-347 CrossRef PubMed Google Scholar

[5] Goss KU, Bronner G. J Phys Chem A, 2006, 110: 9518-9522 CrossRef PubMed ADS Google Scholar

[6] Hung MH, Farnham WB, Feiring AE, Rosen S. Fluoropolymers 1: Synthesis. New York: Plenum Publishing Co., 1999. Google Scholar

[7] Dong C, Huang F, Deng H, Schaffrath C, Spencer JB, O’Hagan D, Naismith JH. Nature, 2004, 427: 561-565 CrossRef PubMed Google Scholar

[8] Chambers RD, Kenwright AM, Parsons M, Sandford G, Moilliet JS. J Chem Soc Perkin Trans 1, 2002, : 2190-2197 CrossRef Google Scholar

[9] Patrick TB, Khazaeli S, Nadji S, Hering-Smith K, Reif D. J Org Chem, 1993, 58: 705-708 CrossRef Google Scholar

[10] Stavber S, Zupan M. J Org Chem, 1991, 56: 7347-7350 CrossRef Google Scholar

[11] Kollonitsch J, Barash L, Doldouras GA. J Am Chem Soc, 1970, 92: 7494-7495 CrossRef Google Scholar

[12] Zhu RY, Tanaka K, Li GC, He J, Fu HY, Li SH, Yu JQ. J Am Chem Soc, 2015, 137: 7067-7070 CrossRef PubMed Google Scholar

[13] Zhang Q, Yin XS, Chen K, Zhang SQ, Shi BF. J Am Chem Soc, 2015, 137: 8219-8226 CrossRef PubMed Google Scholar

[14] Miao J, Yang K, Kurek M, Ge H. Org Lett, 2015, 17: 3738-3741 CrossRef PubMed Google Scholar

[15] Sibi MP, Landais Y. Angew Chem Int Ed, 2013, 52: 3570-3572 CrossRef PubMed Google Scholar

[16] Petrone DA, Ye J, Lautens M. Chem Rev, 2016, 116: 8003-8104 CrossRef PubMed Google Scholar

[17] Ma JA, Li S. Org Chem Front, 2014, 1: 712-715 CrossRef Google Scholar

[18] Chatalova-Sazepin C, Hemelaere R, Paquin JF, Sammis GM. Synthesis, 2015, 47: 2554-2569 CrossRef Google Scholar

[19] Liu W, Huang X, Cheng MJ, Nielsen RJ, Goddard WA, Groves JT. Science, 2012, 337: 1322-1325 CrossRef PubMed ADS Google Scholar

[20] Huang X, Liu W, Ren H, Neelamegam R, Hooker JM, Groves JT. J Am Chem Soc, 2014, 136: 6842-6845 CrossRef PubMed Google Scholar

[21] Bloom S, Pitts CR, Miller DC, Haselton N, Holl MG, Urheim E, Lectka T. Angew Chem Int Ed, 2012, 51: 10580-10583 CrossRef PubMed Google Scholar

[22] Pitts CR, Bloom S, Woltornist R, Auvenshine DJ, Ryzhkov LR, Siegler MA, Lectka T. J Am Chem Soc, 2014, 136: 9780-9791 CrossRef PubMed Google Scholar

[23] Amaoka Y, Nagatomo M, Inoue M. Org Lett, 2013, 15: 2160-2163 CrossRef PubMed Google Scholar

[24] Xia JB, Zhu C, Chen C. J Am Chem Soc, 2013, 135: 17494-17500 CrossRef PubMed Google Scholar

[25] Xia JB, Zhu C, Chen C. Chem Commun, 2014, 50: 11701-11704 CrossRef PubMed Google Scholar

[26] Cantillo D, de Frutos O, Rincón JA, Mateos C, Kappe CO. J Org Chem, 2014, 79: 8486-8490 CrossRef PubMed Google Scholar

[27] Kee CW, Chin KF, Wong MW, Tan CH. Chem Commun, 2014, 50: 8211-8214 CrossRef PubMed Google Scholar

[28] Halperin SD, Fan H, Chang S, Martin RE, Britton R. Angew Chem Int Ed, 2014, 53: 4690-4693 CrossRef PubMed Google Scholar

[29] Nodwell MB, Bagai A, Halperin SD, Martin RE, Knust H, Britton R. Chem Commun, 2015, 51: 11783-11786 CrossRef PubMed Google Scholar

[30] Halperin SD, Kwon D, Holmes M, Regalado EL, Campeau LC, DiRocco DA, Britton R. Org Lett, 2015, 17: 5200-5203 CrossRef PubMed Google Scholar

[31] Bloom S, Sharber SA, Holl MG, Knippel JL, Lectka T. J Org Chem, 2013, 78: 11082-11086 CrossRef PubMed Google Scholar

[32] Pitts CR, Ling B, Woltornist R, Liu R, Lectka T. J Org Chem, 2014, 79: 8895-8899 CrossRef PubMed Google Scholar

[33] West JG, Bedell TA, Sorensen EJ. Angew Chem Int Ed, 2016, 55: 8923-8927 CrossRef PubMed Google Scholar

[34] Xu P, Guo S, Wang L, Tang P. Angew Chem Int Ed, 2014, 53: 5955-5958 CrossRef PubMed Google Scholar

[35] Zhang X, Guo S, Tang P. Org Chem Front, 2015, 2: 806-810 CrossRef Google Scholar

[36] Xia JB, Ma Y, Chen C. Org Chem Front, 2014, 1: 468-472 CrossRef PubMed Google Scholar

[37] Bloom S, Knippel JL, Lectka T. Chem Sci, 2014, 5: 1175-1178 CrossRef Google Scholar

[38] Bloom S, McCann M, Lectka T. Org Lett, 2014, 16: 6338-6341 CrossRef PubMed Google Scholar

[39] Rueda-Becerril M, Chatalova Sazepin C, Leung JCT, Okbinoglu T, Kennepohl P, Paquin JF, Sammis GM. J Am Chem Soc, 2012, 134: 4026-4029 CrossRef PubMed Google Scholar

[40] Yin F, Wang Z, Li Z, Li C. J Am Chem Soc, 2012, 134: 10401-10404 CrossRef PubMed Google Scholar

[41] Mizuta S, Stenhagen ISR, O’Duill M, Wolstenhulme J, Kirjavainen AK, Forsback SJ, Tredwell M, Sandford G, Moore PR, Huiban M, Luthra SK, Passchier J, Solin O, Gouverneur V. Org Lett, 2013, 15: 2648-2651 CrossRef PubMed Google Scholar

[42] Phae-nok S, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. Eur J Org Chem, 2015, 2015: 2879-2888 CrossRef Google Scholar

[43] Leung JCT, Chatalova-Sazepin C, West JG, Rueda-Becerril M, Paquin JF, Sammis GM. Angew Chem Int Ed, 2012, 51: 10804-10807 CrossRef PubMed Google Scholar

[44] Rueda-Becerril M, Mahé O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin JF. J Am Chem Soc, 2014, 136: 2637-2641 CrossRef PubMed Google Scholar

[45] Leung JCT, Sammis GM. Eur J Org Chem, 2015, 2015: 2197-2204 CrossRef Google Scholar

[46] Ventre S, Petronijevic FR, MacMillan DWC. J Am Chem Soc, 2015, 137: 5654-5657 CrossRef PubMed Google Scholar

[47] Wu X, Meng C, Yuan X, Jia X, Qian X, Ye J. Chem Commun, 2015, 51: 11864-11867 CrossRef PubMed Google Scholar

[48] Huang X, Liu W, Hooker JM, Groves JT. Angew Chem Int Ed, 2015, 54: 5241-5245 CrossRef PubMed Google Scholar

[49] Zhang QW, Brusoe AT, Mascitti V, Hesp KD, Blakemore DC, Kohrt JT, Hartwig JF. Angew Chem Int Ed, 2016, 55: 9758-9762 CrossRef PubMed Google Scholar

[50] Zhao H, Fan X, Yu J, Zhu C. J Am Chem Soc, 2015, 137: 3490-3493 CrossRef PubMed Google Scholar

[51] Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem Lett, 2015, 44: 821-823 CrossRef Google Scholar

[52] Ren S, Feng C, Loh TP. Org Biomol Chem, 2015, 13: 5105-5109 CrossRef PubMed Google Scholar

[53] Bloom S, Bume DD, Pitts CR, Lectka T. Chem Eur J, 2015, 21: 8060-8063 CrossRef PubMed Google Scholar

[54] Pitts CR, Bloom MS, Bume DD, Zhang QA, Lectka T. Chem Sci, 2015, 6: 5225-5229 CrossRef Google Scholar

[55] Pitts CR, Ling B, Snyder JA, Bragg AE, Lectka T. J Am Chem Soc, 2016, 138: 6598-6609 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1