logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 979-989(2017) https://doi.org/10.1007/s11426-016-0405-3

Recyclable bifunctional aluminum salen catalyst for CO2 fixation: the efficient formation of five-membered heterocyclic compounds

More info
  • ReceivedOct 3, 2016
  • AcceptedDec 7, 2016
  • PublishedMar 1, 2017

Abstract

A variety of unique Al(salen) complexes functionalized by imidazolium-based ionic liquid (IL) moieties with the salen ligand at the two sides of 3,3′-position have been successfully prepared, rather than familiar 5,5′-position reported previously. The catalytic activity obtained by these bifunctional catalysts could be superior to those of the binary type catalysts in the formation of five-membered heterocyclic compounds from the cycloaddition reaction of CO2 and three-membered heterocyclic compounds (including terminal epoxides and N-substituted aziridines), presumably due to the distinguished intramolecularly synergistic catalysis, which might lead to perform the cycloaddition reaction at ambient conditions and retain excellent yield and unprecedented chemo- or regioselectivity. Moreover, the polyether-based trifunctional Al(salen) catalysts with the best catalytic performance could be regenerated and reused at least eight times without any obvious decreases in catalytic activity. Finally, the kinetic investigation suggested the structure of catalysts had important influences on the catalytic activity, thereby proposing the possible reaction mechanism.


Funded by

National Science for Distinguished Young Scholars of China(21425627)

National Natural Science Foundation of China(21676306)

Natural Science Foundation of Guangdong Province(2016A030310211,2015A030313104)


Acknowledgment

This work was supported by the National Science for Distinguished Young Scholars of China (21425627), the National Natural Science Foundation of China (21676306), the Natural Science Foundation of Guangdong Province (2016A030310211, 2015A030313104) and the Fundamental Research Funds for the Central Universities of Sun Yat-sen University.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Sakakura T, Choi JC, Yasuda H, Mikkelsen M, Jørgensen M, Krebs FC, Omae I, Maeda C, Miyazaki Y, Ema T. Chem Rev, 2007, 107: 2365-2387 CrossRef PubMed Google Scholar

[2] Sakakura T, Kohno K, Decortes A, Castilla AM, Kleij AW, Pescarmona PP, Taherimehr M, He Q, O’Brien JW, Kitselman KA, Tompkins LE, Curtis GCT, Kerton FM, Fiorani G, Guo W, Kleij AW, Bobbink FD, Dyson PJ. Chem Commun, 2009, : 1312-1330 CrossRef PubMed Google Scholar

[3] Yang ZZ, He LN, Gao J, Liu AH, Yu B, Zhao YN, Yang ZZ, Luo SH, He LN. Energy Environ Sci, 2012, 5: 6602-6639 CrossRef Google Scholar

[4] Adeleye AI, Kellici S, Heil T, Morgan D, Vickers M, Saha B, Chen A, Zhao T, Gao H, Chen L, Chen J, Yu Y. Catal Today, 2015, 256: 347-357 CrossRef Google Scholar

[5] Dai W, Jin B, Luo S, Luo X, Tu X, An CT, Alves M, Grignard B, Gennen S, Mereau R, Detrembleur C, Jerome C, Tassaing T, Barthel A, Saih Y, Gimenez M, Pelletier JDA, Kühn FE, D’Elia V, Basset JM, Zhou Y, Hu S, Ma X, Liang S, Jiang T, Han B. Appl Catal A-Gen, 2014, 470: 183-188 CrossRef Google Scholar

[6] Chen W, Zhong L, Peng X, Sun R, Lu F, Song J, Zhang B, Zhang P, Ma J, Liu J, Fan H, Jiang T, Han B, Yang Z, Sun J, Cheng W, Wang J, Li Q, Zhang S. ACS Sustain Chem Eng, 2015, 3: 147-152 CrossRef Google Scholar

[7] Palgunadi J, Kwon OS, Lee H, Bae JY, Ahn BS, Min NY, Kim HS, Zhang S, Chen Y, Li F, Lu X, Dai W, Mori R, Wilhelm ME, Anthofer MH, Reich RM, D’Elia V, Basset JM, Herrmann WA, Cokoja M, Kühn FE, Liu M, Liang L, Li X, Gao X, Sun J, Liu M, Li X, Lin X, Liang L, Gao X, Sun J, Liu M, Liang L, Liang T, Lin X, Shi L, Wang F, Sun J. Catal Today, 2004, 98: 511-514 CrossRef Google Scholar

[8] Jing H, Nguyen SBT, Wang L, Lin L, Zhang G, Kodama K, Yasutake M, Hirose T, Chen A, Chen C, Xiu Y, Liu X, Chen J, Guo L, Zhang R, Hou Z, Wang L, Kodama K, Hirose T. J Mol Catal A-Chem, 2007, 261: 12-15 CrossRef Google Scholar

[9] Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T, Qin Y, Guo H, Sheng X, Wang X, Wang F, Maeda C, Taniguchi T, Ogawa K, Ema T, Jiang X, Gou F, Chen F, Jing H. Chem Commun, 2012, 48: 4489-4491 CrossRef PubMed Google Scholar

[10] North M, Pasquale R, Tian D, Liu B, Gan Q, Li H, Darensbourg DJ, Supasitmongkol S, Styring P, Ren WM, Liu Y, Lu XB, Castro-Osma JA, North M, Wu X, Rulev YA, Larionov VA, Lokutova AV, Moskalenko MA, Lependina OL, Maleev VI, North M, Belokon YN, He S, Wang F, Tong WL, Yiu SM, Chan MCW. Angew Chem Int Ed, 2009, 48: 2946-2948 CrossRef PubMed Google Scholar

[11] Saptal VB, Sasaki T, Harada K, Nishio-Hamane D, Bhanage BM, Li Y, Zou B, Hu C, Cao M, Buyukcakir O, Je SH, Choi DS, Talapaneni SN, Seo Y, Jung Y, Polychronopoulou K, Coskun A, Babu R, Kathalikkattil AC, Roshan R, Tharun J, Kim DW, Park DW. ChemSusChem, 2016, 9: 644-650 CrossRef PubMed Google Scholar

[12] Miller AW, Nguyen SBT, Lu XB, Zhang YJ, Jin K, Luo LM, Wang H, Paddock RL, Nguyen SBT, Decortes A, Martínez Belmonte M, Benet-Buchholz J, Kleij AW, Adhikari D, Miller AW, Baik MH, Nguyen SBT. Org Lett, 2004, 6: 2301-2304 CrossRef PubMed Google Scholar

[13] Ren Y, Chen J, Qi C, Jiang H. ChemCatChem, 2015, 7: 1535-1538 CrossRef Google Scholar

[14] Luo R, Zhou X, Chen S, Li Y, Zhou L, Ji H. Green Chem, 2014, 16: 1496-1506 CrossRef Google Scholar

[15] Martín C, Whiteoak CJ, Martin E, Martínez Belmonte M, Escudero-Adán EC, Kleij AW. Catal Sci Technol, 2014, 4: 1615-1621 CrossRef Google Scholar

[16] Du Y, Wu Y, Liu AH, He LN. J Org Chem, 2008, 73: 4709-4712 CrossRef PubMed Google Scholar

[17] Luo R, Tan R, Peng Z, Zheng W, Kong Y, Yin D. J Catal, 2012, 287: 170-177 CrossRef Google Scholar

[18] Wang Q, Wilson C, Blake AJ, Collinson SR, Tasker PA, Schröder M. Tetrahedron Lett, 2006, 47: 8983-8987 CrossRef Google Scholar

[19] Luo R, Zhou X, Zhang W, Liang Z, Jiang J, Ji H. Green Chem, 2014, 16: 4179-4189 CrossRef Google Scholar

[20] Yang Y, Zhang Y, Hao S, Kan Q. Chem Eng J, 2011, 171: 1356-1366 CrossRef Google Scholar

[21] Zhang H, Liu HB, Yue JM, Shaikh AAG, Sivaram S. Chem Rev, 2014, 114: 883-898 CrossRef PubMed Google Scholar

[22] Luo R, Zhou X, Fang Y, Ji H. Carbon, 2015, 82: 1-11 CrossRef Google Scholar

[23] Darensbourg DJ, Horn Jr A, Moncada AI, Foltran S, Alsarraf J, Robert F, Landais Y, Cloutet E, Cramail H, Tassaing T, Werner T, Büttner H, Elmas S, Subhani MA, Harrer M, Leitner W, Sundermeyer J, Müller TE, Dutta B, Sofack-Kreutzer J, Ghani AA, D’Elia V, Pelletier JDA, Cokoja M, Kühn FE, Basset JM, Liu X, Zhang S, Song QW, Liu XF, Ma R, He LN. Green Chem, 2010, 12: 1376-1379 CrossRef Google Scholar

[24] Bai D, Duan S, Hai L, Jing H. ChemCatChem, 2012, 4: 1752-1758 CrossRef Google Scholar

[25] Sun J, Han L, Cheng W, Wang J, Zhang X, Zhang S. ChemSusChem, 2011, 4: 502-507 CrossRef PubMed Google Scholar

[26] Kathalikkattil AC, Tharun J, Roshan R, Soek HG, Park DW, Nale DB, Rana S, Parida K, Bhanage BM. Appl Catal A-Gen, 2012, 447–448: 107-114 CrossRef Google Scholar

[27] Yang ZZ, He LN, Peng SY, Liu AH, Qi C, Ye J, Zeng W, Jiang H, Yang ZZ, Li YN, Wei YY, He LN, Lin XZ, Yang ZZ, He LN, Yuan ZY, Ma TY, Qiao SZ. Green Chem, 2010, 12: 1850-1854 CrossRef Google Scholar

[28] Tian D, Liu B, Zhang L, Wang X, Zhang W, Han L, Park DW, Miao CX, Wang JQ, Wu Y, Du Y, He LN. J Ind Eng Chem, 2012, 18: 1332-1338 CrossRef Google Scholar

[29] Kumar S, Jain SL. Ind Eng Chem Res, 2014, 53: 541-546 CrossRef Google Scholar

  • Figure 1

    (a) Three-dimensional stack plot of IR spectra collected every 1 min during the coupling reaction of SO (330 mmol) and CO2 with catalyst ISA3 (0.1 mol%) at 80 °C (Tj) and 2.0 MPa CO2 pressure under solvent-free condition; (b) decline in the intensity of the characteristic peak for SO at 815 cm−1 and increase in the intensity of the characteristic peak for SC at 1800 cm−1 (color online).

  • Scheme 1

    Protocols for the preparation of five-membered heterocyclic organic compounds (color online).

  • Scheme 2

    The synthetic route of various bifunctional Al(salen) catalysts (color online).

  • Figure 2

    The calculated results of apparent activate energy (color online).

  • Scheme 3

    Possible mechanism for ISA6-catalyzed CO2 cycloaddition reaction (color online).

  • Figure 3

    Dependence of the conversion on reaction time using 1-n-butyl-2-phenylaziridine as substrate. Reaction conditions: substrate (1.0 mmol), temperaure (50 °C), ISA4 (1.0 mol%), CO2 (1.0 MPa for A, and 0.1 MPa for B), soventless (color online).

  • Figure 4

    The results of recyclability and reusability of catalyst ISA6 in the coupling reaction of three-membered heterocyclic compounds to CO2. Reaction conditions: 10 mL stainless steel autoclave, ISA6 (1.0 mol%), SO (1 mmol) or 1-n-butyl-2-phenylaziridine (1 mmol), reaction temperature (50 °C), CO2 pressure (1.0 MPa) (color online).

  • Figure 5

    The results of synthesis of cyclic carbonates from various terminal epoxides and formation of 5-substituted 2-oxazolidinones from N-substituted aziridines using CO2 as a chemical feedstock. Reaction conditions: catalyst (1.0 mol% ISA6), CO2 pressure (1.0 MPa), reaction temperature (50 °C) (color online).

  • Table 1   The results of the cycloaddition reaction of SO and CO with various catalysts

    Entry

    Catalyst (mol%)

    Conv. (%) b)

    Yield (%) b)

    TOF (h−1) c)

    1 d)

    SA (0.5)

    2

    [BMIm]Br (0.2)

    <10

    9

    5.6

    3

    SA (0.1)+[BMIm]Br (0.2)

    71

    70

    116.7

    4

    ISA1 (0.1)

    36

    35

    58.3

    5

    ISA2 (0.1)

    21

    20

    33.3

    6

    ISA3 (0.1)

    92

    91

    151.7

    7

    ISA4 (0.1)

    16

    15

    25

    8

    ISA5 (0.1)

    33

    32

    53.3

    9

    ISA6 (0.1)

    98

    97

    161.7

    10 e)

    ISA2 (0.1)

    98

    97

    32.3

    11d),e)

    ISA-2 (0.1)

    40

    40

    13.3

    Reaction conditions: a Mettler Toledo EasyMax 102 system equipped with the 100 mL stainless steel autoclave in a semi-batch operation, SO (40 g), catalyst (0.1 mol%), reaction time (6 h), reaction temperature (80 °C), CO2 pressure (2.0 MPa), solventless; b) determined by the in situ IR spectroscopy or GC, the selectivity for the formation of SC was found to be >99%, which was identified via IR, 1H NMR, 13C NMR and GC-MS; c) turnover frequency (TOF): mole of synthesized SC per mole of catalyst per hour; d) the reaction conditions were reported in our published work [14]; e) the reaction time (30 h).

  • Table 2   The results of the cycloaddition reaction of 1-butyl-2-phenylaziridine and CO

    Entry

    Catalyst

    t (h)

    T (°C)

    Conv.

    (%) b)

    Yield (%) b)

    Sel. (%) c)

    TOF (h−1) d)

    1

    2

    50

    10

    <5

    95:5

    2

    SA

    2

    50

    22

    17

    97:3

    85

    3 e)

    [BMIm]Br

    2

    50

    16

    12

    97:3

    60

    4 f)

    SA+[BMIm]Br

    2

    50

    35

    28

    97:3

    5

    ISA3

    2

    50

    89

    86

    98:2

    430

    6

    ISA6

    2

    50

    99

    95

    98:2

    475

    7

    ISA6

    1.5

    50

    88

    85

    98:2

    567

    8

    ISA6

    1

    50

    38

    35

    97:3

    350

    9

    ISA6

    2

    40

    79

    75

    97:3

    375

    10

    ISA6

    2

    30

    37

    32

    97:3

    160

    Reaction conditions: the 10 mL stainless steel autoclave in a semi-batch operation; 1-n-butyl-2-phenylaziridine (1 mmol); catalyst (1.0 mol%); reaction time (2 h); reaction temperature (50 °C); CO2 pressure (1.0 MPa); solventless; b) determined by GC with biphenyl as an internal standard, and the structure of product was identified via 1H NMR, 13C NMR and GC-MS; c) the molar ratio of 5-position to 4-position; d) same as Table 1; e) [BMIm]Br (2.0 mol%); f) SA (1.0 mol%) and [BMIm]Br (2.0 mol%).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1