logo

SCIENCE CHINA Chemistry, Volume 60, Issue 6: 799-805(2017) https://doi.org/10.1007/s11426-016-0409-4

Mesoporous silica nanoparticles-assisted ruthenium(II) complexes for live cell staining

More info
  • ReceivedOct 5, 2016
  • AcceptedDec 13, 2016
  • PublishedFeb 27, 2017

Abstract

Ruthenium complexes which can bind to DNA via electrostatic and intercalation interactions producing strong luminescence have become ideal candidates for DNA staining. However, some of them such as Ru(phen)3Cl2 and Ru(phen)2(dppz)Cl2 could hardly cross the cellular membrane of live cells which limited their further interaction with DNA in live cells. To solve this problem, a potential approach is to find a proper vehicle for loading and delivery of these ruthenium complexes into live cells. Mesoporous silica nanoparticles (MSNs) with non-toxicity and good biocompatibility can be good candidates. More importantly, ruthenium complexes with positively charge could be loaded on negatively charged MSNs via electrostatic attractions to form MSNs-Ru hybrid. In vitro test demonstrated that MSNs had no side effects on the interactions between Ru complexes and DNA. Furthermore, it is found that the MSNs-Ru hybrid can enter into living human cervical cancer cells HeLa and stain the DNA while the corresponding ruthenium complexes alone could hardly cross the cellular membrane in the control experiment, demonstrating MSNs can be employed to be an efficient ruthenium complexes delivery nanomaterial for live cell staining.


Acknowledgment

This work was supported by the Scientific Research Foundation of Northwest A&F University (Z111021103, Z111021107), and the National Natural Science Foundation of China (21472016, 21272030, 21476185).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res, 2008, 36: 3690–3706. Google Scholar

[2] Lo KKW, Choi AWT, Law WHT. Dalton Trans, 2012, 41: 6021-6047 CrossRef PubMed Google Scholar

[3] Shamsipur M, Memari Z, Ganjali MR, Norouzi P, Faridbod F. J Pharmaceut Biomed Anal, 2016, 118: 356-362 CrossRef PubMed Google Scholar

[4] Wang L, Liu S, Hao C, Zhang X, Wang C, He Y. Sensor Actuat B-Chem, 2016, 229: 145-154 CrossRef Google Scholar

[5] Chu C, Wang X, Li S, Ge S, Ge L, Yu J, Yan M. Anal Methods, 2012, 4: 4339-4345 CrossRef Google Scholar

[6] Wang Q, Xu N, Lei J, Ju H. Chem Commun, 2014, 50: 6714-6717 CrossRef PubMed Google Scholar

[7] Lo K, Tsang K, Sze K, Chung C, Lee T, Zhang K, Hui W, Li C, Lau J, Ng D. Coordin Chem Rev, 2007, 251: 2292-2310 CrossRef Google Scholar

[8] Lo KKW, Zhang KY, Leung SK, Tang MC. Angew Chem Int Ed, 2008, 47: 2213-2216 CrossRef PubMed Google Scholar

[9] Capodilupo AL, Vergaro V, Accorsi G, Fabiano E, Baldassarre F, Corrente GA, Gigli G, Ciccarella G. Tetrahedron, 2016, 72: 2920-2928 CrossRef Google Scholar

[10] Norton AB, Hancocks RD, Spyropoulos F, Grover LM. Food Hydrocolloid, 2016, 53: 93-97 CrossRef Google Scholar

[11] Liao G, Chen X, Wu J, Qian C, Wang Y, Ji L, Chao H. Dalton Trans, 2015, 44: 15145-15156 CrossRef PubMed Google Scholar

[12] Rajendiran V, Palaniandavar M, Periasamy VS, Akbarsha MA. J Inorg Biochem, 2010, 104: 217-220 CrossRef PubMed Google Scholar

[13] Hu P, Wang Y, Zhang Y, Song H, Gao F, Lin H, Wang Z, Wei L, Yang F. RSC Adv, 2016, 6: 29963-29976 CrossRef Google Scholar

[14] Zhang Y, Hu PC, Cai P, Yang F, Cheng GZ. RSC Adv, 2015, 5: 11591-11598 CrossRef Google Scholar

[15] Nithyakumar A, Alexander V. New J Chem, 2016, 40: 4606-4616 CrossRef Google Scholar

[16] Lo KKW, Li SPY. RSC Adv, 2014, 4: 10560-10585 CrossRef Google Scholar

[17] Li G, Sun L, Ji L, Chao H. Dalton Trans, 2016, 45: 13261-13276 CrossRef PubMed Google Scholar

[18] Li H, Wen J, Yu R, Meng J, Wang C, Wang C, Sun S. RSC Adv, 2015, 5: 9341-9347 CrossRef Google Scholar

[19] Li H, Wen J, Yu R, Bai C, Xu Y, Liu ZH, Sun S. RSC Adv, 2015, 5: 26856-26862 CrossRef Google Scholar

[20] Gill MR, Thomas JA. Chem Soc Rev, 2012, 41: 3179-3192 CrossRef PubMed Google Scholar

[21] Balakrishnan G, Rajendran T, Senthil Murugan K, Sathish Kumar M, Sivasubramanian VK, Ganesan M, Mahesh A, Thirunalasundari T, Rajagopal S. Inorg Chim Acta, 2015, 434: 51-59 CrossRef Google Scholar

[22] Liu P, Wang X, Hiltunen K, Chen Z. ACS Appl Mater Interfaces, 2015, 7: 26811-26818 CrossRef Google Scholar

[23] Chen WX, Song XD, Chen JX, Zhao XH, Xing JH, Ren JR, Wu T, Sun J. Polyhedron, 2016, 110: 274-281 CrossRef Google Scholar

[24] Zhao XL, Li ZS, Zheng ZB, Zhang AG, Wang KZ. Dalton Trans, 2013, 42: 5764-5777 CrossRef PubMed Google Scholar

[25] Tan L, Shen J, Liu J, Zeng L, Jin L, Weng C. Dalton Trans, 2012, 41: 4575-4587 CrossRef PubMed Google Scholar

[26] Thota S, Vallala S, Yerra R, Rodrigues DA, Raghavendra NM, Barreiro EJ. Int J Biol Macromol, 2016, 82: 663-670 CrossRef PubMed Google Scholar

[27] El-Sonbati AZ, Shoair AF, El-Bindary AA, Diab MA, Mohamed AS. J Mol Liq, 2015, 209: 635-647 CrossRef Google Scholar

[28] Kumar A, Kumar A, Gupta RK, Paitandi RP, Singh KB, Trigun SK, Hundal MS, Pandey DS. J Organomet Chem, 2016, 801: 68-79 CrossRef Google Scholar

[29] Li HJ, Liu FY, Sun SG, Wang JY, Li ZY, Mu DZ, Qiao B, Peng XJ. J Mater Chem B, 2013, 1: 4146–4151. Google Scholar

[30] Liu F, Gao Y, Li H, Sun S. Carbon, 2014, 71: 190-195 CrossRef Google Scholar

[31] Li Z, Sun S, Yang Z, Zhang S, Zhang H, Hu M, Cao J, Wang J, Liu F, Song F, Fan J, Peng X. Biomaterials, 2013, 34: 6473-6481 CrossRef PubMed Google Scholar

[32] Popat A, Ross BP, Liu J, Jambhrunkar S, Kleitz F, Qiao SZ. Angew Chem Int Ed, 2012, 51: 12486-12489 CrossRef PubMed Google Scholar

[33] Slowing II, Trewyn BG, Lin VSY. J Am Chem Soc, 2007, 129: 8845-8849 CrossRef PubMed Google Scholar

[34] Han N, Wang Y, Bai J, Liu J, Wang Y, Gao Y, Jiang T, Kang W, Wang S. Microporous Mesoporous Mater, 2016, 219: 209-218 CrossRef Google Scholar

[35] Yuan Q, Zhang Y, Chen T, Lu D, Zhao Z, Zhang X, Li Z, Yan CH, Tan W. ACS Nano, 2012, 6: 6337-6344 CrossRef PubMed Google Scholar

[36] Sinha A, Jana NR. Eur J Inorg Chem, 2012, 2012: 4470-4478 CrossRef Google Scholar

[37] Walcarius A. Electroanalysis, 2015, 27: 1303-1340 CrossRef Google Scholar

[38] Deng Y, Wei J, Sun Z, Zhao D. Chem Soc Rev, 2013, 42: 4054-4070 CrossRef PubMed Google Scholar

[39] Chen HW, Chiang YD, Kung CW, Sakai N, Ikegami M, Yamauchi Y, Wu KCW, Miyasaka T, Ho KC. J Power Sources, 2014, 245: 411-417 CrossRef ADS Google Scholar

[40] Zhou Z, Hartmann M. Chem Soc Rev, 2013, 42: 3894-3912 CrossRef PubMed Google Scholar

[41] Wu SH, Mou CY, Lin HP. Chem Soc Rev, 2013, 42: 3862-3875 CrossRef PubMed Google Scholar

[42] Colilla M, González B, Vallet-Regí M. Biomater Sci, 2013, 1: 114-134 CrossRef Google Scholar

[43] Chen H, Zheng D, Liu J, Kuang Y, Li Q, Zhang M, Ye H, Qin H, Xu Y, Li C, Jiang B. Int J Biol Macromol, 2016, 85: 596-603 CrossRef PubMed Google Scholar

[44] Niemelä E, Desai D, Nkizinkiko Y, Eriksson JE, Rosenholm JM. Eur J Pharm Biopharm, 2015, 96: 11-21 CrossRef PubMed Google Scholar

[45] Teng Z, Han Y, Li J, Yan F, Yang W. Microporous Mesoporous Mater, 2010, 127: 67-72 CrossRef Google Scholar

[46] Westerlund F, Pierard F, Eng MP, Nordén B, Lincoln P. J Phys Chem B, 2005, 109: 17327-17332 CrossRef PubMed Google Scholar

[47] Dickeson J, Summers L. Aust J Chem, 1970, 23: 1023-1027 CrossRef Google Scholar

[48] Zhang X, Zhang X, Wang S, Liu M, Zhang Y, Tao L, Wei Y. ACS Appl Mater Interfaces, 2013, 5: 1943-1947 CrossRef PubMed Google Scholar

[49] Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S. Nanomed-Nanotechnol Biol Med, 2015, 11: 313-327 CrossRef PubMed Google Scholar

[50] Zhu CL, Lu CH, Song XY, Yang HH, Wang XR. J Am Chem Soc, 2011, 133: 1278-1281 CrossRef PubMed Google Scholar

  • Figure 1

    The structure of Ru(phen)3Cl2 and Ru(phen)2(dppz)Cl2 (color online).

  • Scheme 1

    Schematic demonstration of MSNs-Ru hybrid for live cell imaging (color online).

  • Figure 2

    SEM micrographs of (a) MSNs and (b) MR-1. Scale bar, 200 nm. TEM micrographs of (c) MSN and (d) MR-1. Scale bar, 200 nm.

  • Figure 3

    Luminescence titration studies of MR-1 and MR-2 upon addition of ct-DNA. (a) Luminescence spectra of MR-1 (3 mL, 1 μM) upon addition of ct-DNA in Tris-HCl buffer (10 mM, pH 7.4) at room temperature. (b) The linear relationship between the luminescent intensity and ct-DNA concentration. λex=465 nm, λem=588 nm. (c) Luminescence spectra of MR-2 (3 mL, 5 μM) upon addition of ct-DNA in Tris-HCl buffer (10 mM, pH 7.4) at room temperature. (d) The linear relationship between the luminescent intensity and ct-DNA concentration. λex=465 nm, λem=605 nm (color online).

  • Figure 4

    (a) CLSM images of HeLa cells incubated with Ru(phen)3Cl2 and MR-1 for 3, 6 and 9 h respectively; (b) CLSM images of HeLa cells incubated with Ru(phen)2(dppz)Cl2 and MR-2 for 3, 6 and 9 h respectively. The concentrations of the dyes are all 10 μM. Scale bar: 10 μm (color online).

  • Figure 5

    (a) Cytotoxicity of Ru(phen)3Cl2 and MR-1 at different concentrations on HeLa cells for 24 h; (b) cytotoxicity of Ru(phen)2(dppz)Cl2 and MR-2 at different concentrations on HeLa cells for 24 h (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1