logo

SCIENCE CHINA Chemistry, Volume 60, Issue 3: 415-422(2017) https://doi.org/10.1007/s11426-016-0420-8

One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater

More info
  • ReceivedOct 16, 2016
  • AcceptedNov 25, 2016
  • PublishedFeb 14, 2017

Abstract

Graphene oxide and Ni-Al layered double hydroxides (GO@LDH) nanocomposites were synthesized via a one-pot hydrothermal process, and characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in detail. The exploration of U(VI) sorption on GO@LDH surface was performed as a function of ionic strength, solution pH, contact time, U(VI) initial concentrations and temperature. Results of Langmuir isotherms showed that the sorption capacity of GO@LDH (160 mg/g) was much higher than those of LDH (69 mg/g) and GO (92 mg/g). The formed surface complexes between surface oxygen-containing functional groups of GO@LDH and U(VI) turned out to be the interaction mechanism of U(VI) with GO@LDH. According to the thermodynamic studies results, the sorption interaction was actually a spontaneous and endothermic chemical process. The sorption isotherms were better fitted with the Langmuir model compared with other models, which suggested the interaction was mainly dominated by monolayer coverage. The GO@LDH nanocomposites provide potential applications as adsorbents in the enrichment of radionuclides from wastewater in nuclear waste management and environmental remediation.


Funded by

National Natural Science Foundation of China(91326202,21225730,21577032,the Fundamental Research Funds for the Central Universities (JB2015001)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (91326202, 21225730, 21577032) and the Fundamental Research Funds for the Central Universities (JB2015001).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D. Chem Eng J, 2015, 259: 752-760 CrossRef Google Scholar

[2] Yu S, Wang X, Tan X, Wang X. Inorg Chem Front, 2015, 2: 593-612 CrossRef Google Scholar

[3] Li S, Bai H, Wang J, Jing X, Liu Q, Zhang M, Chen R, Liu L, Jiao C. Chem Eng J, 2012, 193-194: 372-380 CrossRef Google Scholar

[4] Salomone VN, Meichtry JM, Litter MI. Chem Eng J, 2015, 270: 28-35 CrossRef Google Scholar

[5] Zhou C, Ontiveros-Valencia A, Cornette de Saint Cyr L, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE. Water Res, 2014, 64: 255-264 CrossRef PubMed Google Scholar

[6] Liu J, Zhao C, Zhang Z, Liao J, Liu Y, Cao X, Yang J, Yang Y, Liu N. Chem Eng J, 2016, 288: 505-515 CrossRef Google Scholar

[7] Troyer LD, Maillot F, Wang Z, Wang Z, Mehta VS, Giammar DE, Catalano JG. Geochim Cosmochim Acta, 2016, 175: 86-99 CrossRef ADS Google Scholar

[8] Liu W, Zhao X, Wang T, Zhao D, Ni J. Chem Eng J, 2016, 286: 427-435 CrossRef Google Scholar

[9] Ding C, Cheng W, Sun Y, Wang X. J Hazard Mater, 2015, 295: 127-137 CrossRef PubMed Google Scholar

[10] Ding C, Cheng W, Sun Y, Wang X. Geochim Cosmochim Acta, 2015, 165: 86-107 CrossRef ADS Google Scholar

[11] Schindler M, Legrand CA, Hochella Jr. MF. Geochim Cosmochim Acta, 2015, 153: 15-36 CrossRef ADS Google Scholar

[12] Mei H, Tan X, Yu S, Ren X, Chen C, Wang X. Chem Eng J, 2015, 269: 371-378 CrossRef Google Scholar

[13] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[14] Ding C, Cheng W, Sun Y, Wang X. Dalton Trans, 2014, 43: 3888-3896 CrossRef PubMed Google Scholar

[15] Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255-4262 CrossRef PubMed ADS Google Scholar

[16] Dubey SP, Dwivedi AD, Kim IC, Sillanpaa M, Kwon YN, Lee C. Chem Eng J, 2014, 244: 160-167 CrossRef Google Scholar

[17] Li J, Fan Q, Wu Y, Wang X, Chen C, Tang Z, Wang X. J Mater Chem A, 2016, 4: 1737-1746 CrossRef Google Scholar

[18] Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M. Ind Eng Chem Res, 2013, 52: 10152-10159 CrossRef Google Scholar

[19] Ma S, Huang L, Ma L, Shim Y, Islam SM, Wang P, Zhao LD, Wang S, Sun G, Yang X, Kanatzidis MG. J Am Chem Soc, 2015, 137: 3670-3677 CrossRef PubMed Google Scholar

[20] Hummers Jr WS, Offeman RE. J Am Chem Soc, 1958, 80: 1339-1339 CrossRef Google Scholar

[21] Yu S, Wang X, Chen Z, Wang J, Wang S, Hayat T, Wang X. J Hazard Mater, 2017, 321: 111-120 CrossRef PubMed Google Scholar

[22] Wen T, Wu X, Tan X, Wang X, Xu A. ACS Appl Mater Interfaces, 2013, 5: 3304-3311 CrossRef PubMed Google Scholar

[23] Zhao G, Li J, Ren X, Chen C, Wang X. Environ Sci Technol, 2011, 45: 10454-10462 CrossRef PubMed Google Scholar

[24] Yu S, Wang X, Ai Y, Tan X, Hayat T, Hu W, Wang X. J Mater Chem A, 2016, 4: 5654-5662 CrossRef Google Scholar

[25] Jin Z, Wang X, Sun Y, Ai Y, Wang X. Environ Sci Technol, 2015, 49: 9168-9175 CrossRef PubMed ADS Google Scholar

[26] Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X. Geochim Cosmochim Acta, 2016, 180: 51-65 CrossRef ADS Google Scholar

[27] Wang X, Fan Q, Yu S, Chen Z, Ai Y, Sun Y, Hobiny A, Alsaedi A, Wang X. Chem Eng J, 2016, 287: 448-455 CrossRef Google Scholar

[28] Wang X, Chen Z, Wang X. Sci China Chem, 2015, 58: 1766-1773 CrossRef Google Scholar

[29] Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W. Chem Eng J, 2012, 210: 539-546 CrossRef Google Scholar

[30] Song WC, Shao DD, Lu SS, Wang XK. Sci China Chem, 2014, 57: 1291-1299 CrossRef Google Scholar

[31] Ho YS, McKay G. Chem Eng J, 1998, 70: 115-124 CrossRef Google Scholar

[32] Ho YS. J Hazard Mater, 2006, 136: 681-689 CrossRef PubMed Google Scholar

[33] Langmuir I. J Am Chem Soc, 1918, 40: 1361-1403 CrossRef Google Scholar

[34] Freundlich HMF. J Phys Chem, 1906, 57: 385–470. Google Scholar

[35] Shan R, Yan L, Yang K, Hao Y, Du B. J Hazard Mater, 2015, 299: 42-49 CrossRef PubMed Google Scholar

[36] Wang X, Wang J, Chen Y, Chen Z, Wang Q, Hayat T, Wang X. J Radioanal Nucl Chem, 2016, 309: 1241-1250 CrossRef Google Scholar

  • Figure 1

    Characterization of GO@LDH. (a) SEM image; (b) TEM image; (c) XRD pattern; (d) FTIR spectrum; (e) C 1s XPS spectrum; (f) Raman spectrum (color online).

  • Figure 2

    Effect of (a) pH and (b) ionic strength on U(VI) sorption onto GO@LDH at T=298 K, m/V=0.22 g/L and c0=50 mg/L (color online).

  • Figure 3

    (a) Zeta-potential of GO@LDH as a function of pH in 0.01 M NaNO3 solution; (b) relative proportion of U(VI) species as a function of pH in 0.01 M NaNO3 solution (color online).

  • Figure 4

    (a) The kinetics of U(VI) removal by GO@LDH; (b) the fitting of kinetic sorption data using pseudo-second order kinetic model, T=298 K, m/V=0.22 g/L, I=0.01 M NaNO3, pH 4.5±0.1 and c0=50 mg/L.

  • Figure 5

    (a) Sorption isotherms of U(VI) on GO@LDH at different temperatures; (b) sorption isotherms of U(VI) on GO@LDH, GO and LDH at 298 K. m/V=0.22 g/L, pH 4.5±0.1 and I=0.01 M NaNO3. The solid lines represent the Langmuir model. The dashed lines represent the Freundlich model (color online).

  • Figure 6

    (a) Linear plots of ln(qe/ce) versus ce; (b) linear plot of ΔG versus T, m/V=0.22 g/L, pH 4.5±0.1 and I=0.01 M NaNO3 (color online).

  • Figure 7

    Recycling of GO@LDH nanocomposites for the removal of U(VI) (color online).

  • Table 1   Parameters for the Langmuir and Freundlich isotherm models at different temperatures

    T (K)

    Langmuir model

    Freundlich model

    qmax (mg/g)

    b (L/mg)

    R2

    KF (mg1−n Ln/g)

    n

    R2

    298

    159.7

    0.063

    0.990

    25.5

    0.40

    0.921

    313

    201.3

    0.052

    0.993

    25.3

    0.45

    0.954

    328

    265.1

    0.043

    0.994

    25.4

    0.51

    0.964

  • Table 2   Thermodynamic parameters for the sorption of U(VI) on GO@LDH

    T (K)

    ΔG (kJ/mol)

    ΔS (J/(mol K))

    ΔH (kJ/mol)

    298

    −4.85

    8.22

    313

    −5.50

    43.86

    8.23

    328

    −6.17

    8.22

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1