logo

SCIENCE CHINA Chemistry, Volume 60, Issue 5: 571-582(2017) https://doi.org/10.1007/s11426-016-0424-9

Towards a bright future: polymer solar cells with power conversion efficiencies over 10%

More info
  • ReceivedOct 19, 2016
  • AcceptedDec 8, 2016
  • PublishedMar 1, 2017

Abstract

Remarkable progress in high-performance polymer solar cells demonstrates their great potential for practical applications in the near future. Indeed, the power conversion efficiencies over 10% have been reported by many research groups, which are achieved through rational optimization of light-harvesting materials, interfaces and device processing technologies. In this mini review, we summarized the recent progress of highly efficient polymer solar cells, with specifically concern on successful strategies of rational molecular design of electron-donating and electron-accepting materials, elaborative interfacial engineering, and reasonable device architectures.


Funded by

Ministry of Science and Technology(2014CB643501)

Natural Science Foundation of China(21520102006,21634004,51673069,21490573)

Guangdong Natural Science Foundation(S2012030006232)


Acknowledgment

This work was supported by the Ministry of Science and Technology (2014CB643501), the National Natural Science Foundation of China (21520102006, 21634004, 51673069, 21490573), and the Guangdong Natural Science Foundation (S2012030006232).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153-161 CrossRef ADS Google Scholar

[2] Li Y. Acc Chem Res, 2012, 45: 723-733 CrossRef PubMed Google Scholar

[3] Zhou H, Yang L, You W. Macromolecules, 2012, 45: 607-632 CrossRef ADS Google Scholar

[4] Liu C, Wang K, Gong X, Heeger AJ. Chem Soc Rev, 2016, 45: 4848-4849 CrossRef PubMed Google Scholar

[5] Duan C, Zhang K, Zhong C, Huang F, Cao Y. Chem Soc Rev, 2013, 42: 9071-9104 CrossRef PubMed Google Scholar

[6] Zhang S, Ye L, Hou J. Adv Energy Mater, 2016, 6: 1502529 CrossRef Google Scholar

[7] Li Y. Sci China Chem, 2015, 58: 188-188 CrossRef Google Scholar

[8] Huang F. Sci China Chem, 2015, 58: 190-190 CrossRef Google Scholar

[9] Huang F, Cao Y. Acta Polym Sin, 2016, 4: 399–401. Google Scholar

[10] Li Y. Sci China Chem, 2016, 59: 1430-1431 CrossRef Google Scholar

[11] Zuo L, Chang CY, Chueh CC, Zhang S, Li H, Jen AKY, Chen H. Energy Environ Sci, 2015, 8: 1712-1718 CrossRef Google Scholar

[12] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. Nat Commun, 2013, 4: 1446-1456 CrossRef PubMed ADS Google Scholar

[13] Zheng Z, Zhang S, Zhang M, Zhao K, Ye L, Chen Y, Yang B, Hou J. Adv Mater, 2015, 27: 1189-1194 CrossRef PubMed Google Scholar

[14] Zhang K, Gao K, Xia R, Wu Z, Sun C, Cao J, Qian L, Li W, Liu S, Huang F, Peng X, Ding L, Yip HL, Cao Y. Adv Mater, 2016, 28: 4817-4823 CrossRef PubMed Google Scholar

[15] Zhang Q, Wan X, Liu F, Kan B, Li M, Feng H, Zhang H, Russell TP, Chen Y. Adv Mater, 2016, 28: 7008-7012 CrossRef PubMed Google Scholar

[16] Chen CC, Chang WH, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y. Adv Mater, 2014, 26: 5670-5677 CrossRef PubMed Google Scholar

[17] Yusoff ARM, Kim D, Kim HP, Shneider FK, da Silva WJ, Jang J. Energy Environ Sci, 2015, 8: 303-316 CrossRef Google Scholar

[18] Meng X, Zhao G, Xu Q, Tan Z, Zhang Z, Jiang L, Shu C, Wang C, Li Y. Adv Funct Mater, 2014, 24: 158-163 CrossRef Google Scholar

[19] Liao SH, Li YL, Jen TH, Cheng YS, Chen SA. J Am Chem Soc, 2012, 134: 14271-14274 CrossRef PubMed Google Scholar

[20] Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y. Appl Phys Lett, 2008, 92: 033307 CrossRef ADS Google Scholar

[21] Blouin N, Michaud A, Leclerc M. Adv Mater, 2007, 19: 2295-2300 CrossRef Google Scholar

[22] Stuart AC, Tumbleston JR, Zhou H, Li W, Liu S, Ade H, You W. J Am Chem Soc, 2013, 135: 1806-1815 CrossRef PubMed Google Scholar

[23] Zhang M, Gu Y, Guo X, Liu F, Zhang S, Huo L, Russell TP, Hou J. Adv Mater, 2013, 25: 4944-4949 CrossRef PubMed Google Scholar

[24] Yue J, Liang J, Sun S, Zhong W, Lan L, Ying L, Yang W, Cao Y. Dyes Pigments, 2015, 123: 64-71 CrossRef Google Scholar

[25] Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Jeong JE, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY. Energy Environ Sci, 2014, 7: 3040-3051 CrossRef Google Scholar

[26] Lan L, Chen Z, Hu Q, Ying L, Zhu R, Liu F, Russell TP, Huang F, Cao Y. Adv Sci, 2016, 3: 1600032 CrossRef PubMed Google Scholar

[27] Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192-209 CrossRef Google Scholar

[28] Li W, Li Q, Liu S, Duan C, Ying L, Huang F, Cao Y. Sci China Chem, 2015, 58: 257-266 CrossRef Google Scholar

[29] Liu Z, Sun J, Zhu Y, Liu P, Zhang L, Chen J, Huang F, Cao Y. Sci China Chem, 2015, 58: 267-275 CrossRef Google Scholar

[30] Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28: 6504-6508 CrossRef PubMed Google Scholar

[31] Wang N, Chen W, Shen W, Duan L, Qiu M, Wang J, Yang C, Du Z, Yang R. J Mater Chem A, 2016, 4: 10212-10222 CrossRef Google Scholar

[32] Shi SB, Liao QG, Tang YM, Guo H, Zhou X, WangYL, Yang TB, Liang YY, Cheng X, Liu F, Guo XG. Adv Mater, 2016, doi: 10.1002/adma.20160311. Google Scholar

[33] Hou J, Chen HY, Zhang S, Chen RI, Yang Y, Wu Y, Li G. J Am Chem Soc, 2009, 131: 15586-15587 CrossRef PubMed Google Scholar

[34] Chen HY, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Nat Photon, 2009, 3: 649-653 CrossRef ADS Google Scholar

[35] Liang Y, Wu Y, Feng D, Tsai ST, Son HJ, Li G, Yu L. J Am Chem Soc, 2009, 131: 56-57 CrossRef PubMed Google Scholar

[36] Liang Y, Yu L. Acc Chem Res, 2010, 43: 1227-1236 CrossRef PubMed Google Scholar

[37] Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. Adv Mater, 2010, 22: E135-E138 CrossRef PubMed Google Scholar

[38] Liao SH, Jhuo HJ, Cheng YS, Chen SA. Adv Mater, 2013, 25: 4766-4771 CrossRef PubMed Google Scholar

[39] Cui C, Wong WY, Li Y. Energy Environ Sci, 2014, 7: 2276-2284 CrossRef Google Scholar

[40] Ye L, Zhang S, Zhao W, Yao H, Hou J. Chem Mater, 2014, 26: 3603-3605 CrossRef Google Scholar

[41] Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J. Angew Chem Int Ed, 2011, 50: 9697-9702 CrossRef PubMed Google Scholar

[42] Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell TP, Yip HL, Huang F, Cao Y. Chem Mater, 2014, 26: 3009-3017 CrossRef Google Scholar

[43] Zhong H, Li CZ, Carpenter J, Ade H, Jen AKY. J Am Chem Soc, 2015, 137: 7616-7619 CrossRef PubMed Google Scholar

[44] Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248-256 CrossRef Google Scholar

[45] Liu C, Yi C, Wang K, Yang Y, Bhatta RS, Tsige M, Xiao S, Gong X. ACS Appl Mater Interfaces, 2015, 7: 4928-4935 CrossRef PubMed Google Scholar

[46] Liao SH, Jhuo HJ, Yeh PN, Cheng YS, Li YL, Lee YH, Sharma S, Chen SA. Sci Rep, 2014, 4: 6813-6819 CrossRef PubMed ADS Google Scholar

[47] Zhao F, Wang Z, Zhang J, Zhu X, Zhang Y, Fang J, Deng D, Wei Z, Li Y, Jiang L, Wang C. Adv Energy Mater, 2016, 6 CrossRef Google Scholar

[48] Jagadamma LK, Al-Senani M, El-Labban A, Gereige I, Ngongang Ndjawa GO, Faria JCD, Kim T, Zhao K, Cruciani F, Anjum DH, McLachlan MA, Beaujuge PM, Amassian A. Adv Energy Mater, 2015, 5: 1500204 CrossRef Google Scholar

[49] Nho S, Baek G, Park S, Lee BR, Cha MJ, Lim DC, Seo JH, Oh SH, Song MH, Cho S. Energy Environ Sci, 2016, 9: 240-246 CrossRef Google Scholar

[50] Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y. J Am Chem Soc, 2015, 137: 6995-6998 CrossRef PubMed Google Scholar

[51] Nam S, Seo J, Woo S, Kim WH, Kim H, Bradley DDC, Kim Y. Nat Commun, 2015, 6: 8929-8938 CrossRef PubMed ADS Google Scholar

[52] Ouyang X, Peng R, Ai L, Zhang X, Ge Z. Nat Photon, 2015, 9: 520-524 CrossRef ADS Google Scholar

[53] Liu Y, Page ZA, Russell TP, Emrick T. Angew Chem Int Ed, 2015, 54: 11485-11489 CrossRef PubMed Google Scholar

[54] He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174-179 CrossRef ADS Google Scholar

[55] Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015, 27: 1035-1041 CrossRef PubMed Google Scholar

[56] Baek SW, Hun Kim J, Kang J, Lee H, Young Park J, Lee JY. Adv Energy Mater, 2015, 5: 1501393 CrossRef Google Scholar

[57] Huang J, Li CZ, Chueh CC, Liu SQ, Yu JS, Jen AKY. Adv Energy Mater, 2015, 5: 1500406 CrossRef Google Scholar

[58] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293-5301 CrossRef PubMed ADS Google Scholar

[59] Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, Peng J, Ma Y, Cao Y. Adv Mater, 2014, 26: 2586-2591 CrossRef PubMed Google Scholar

[60] Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137: 14149-14157 CrossRef PubMed Google Scholar

[61] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027-15034 CrossRef ADS Google Scholar

[62] Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang XF, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28: 9811-9818 CrossRef PubMed Google Scholar

[63] Kawashima K, Fukuhara T, Suda Y, Suzuki Y, Koganezawa T, Yoshida H, Ohkita H, Osaka I, Takimiya K. J Am Chem Soc, 2016, 138: 10265-10275 CrossRef PubMed Google Scholar

[64] Zhou C, Zhang G, Zhong C, Jia X, Luo P, Xu R, Gao K, Jiang X, Liu F, Russell TP, Huang F, Cao Y. Adv Energy Mater, 2016, : 1601081 CrossRef Google Scholar

[65] Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, Murata H. Nat Photon, 2015, 9: 403-408 CrossRef ADS Google Scholar

[66] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[67] Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J Am Chem Soc, 2016, 138: 375-380 CrossRef PubMed Google Scholar

[68] Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su CJ, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J Am Chem Soc, 2016, 138: 2973-2976 CrossRef PubMed Google Scholar

[69] Gao L, Zhang ZG, Xue L, Min J, Zhang J, Wei Z, Li Y. Adv Mater, 2016, 28: 1884-1890 CrossRef PubMed Google Scholar

[70] Hwang YJ, Li H, Courtright BAE, Subramaniyan S, Jenekhe SA. Adv Mater, 2016, 28: 124-131 CrossRef PubMed Google Scholar

[71] Zhong Y, Trinh MT, Chen R, Purdum GE, Khlyabich PP, Sezen M, Oh S, Zhu H, Fowler B, Zhang B, Wang W, Nam CY, Sfeir MY, Black CT, Steigerwald ML, Loo YL, Ng F, Zhu XY, Nuckolls C. Nat Commun, 2015, 6: 8242 CrossRef PubMed ADS Google Scholar

[72] Li S, Liu W, Shi M, Mai J, Lau TK, Wan J, Lu X, Li CZ, Chen H. Energy Environ Sci, 2016, 9: 604-610 CrossRef Google Scholar

[73] Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734-4739 CrossRef PubMed Google Scholar

[74] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423-9429 CrossRef PubMed Google Scholar

[75] Qin YP, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu RN, Shin TJ, Woo HY, Hou JH. Adv Mater, 2016, doi: 10.1002/adma.20160180. Google Scholar

[76] Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y. Nat Photon, 2014, 9: 35-41 CrossRef ADS Google Scholar

[77] Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y. J Am Chem Soc, 2013, 135: 8484-8487 CrossRef PubMed Google Scholar

[78] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y. J Am Chem Soc, 2015, 137: 3886-3893 CrossRef PubMed Google Scholar

[79] Zhang Y, Deng D, Lu K, Zhang J, Xia B, Zhao Y, Fang J, Wei Z. Adv Mater, 2015, 27: 1071-1076 CrossRef PubMed Google Scholar

[80] Wang Z, Zhang Y, Zhang J, Wei Z, Ma W. Adv Energy Mater, 2016, 6: 1502456 CrossRef Google Scholar

[81] Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176-8183 CrossRef PubMed Google Scholar

[82] Liu T, Huo L, Sun X, Fan B, Cai Y, Kim T, Kim JY, Choi H, Sun Y. Adv Energy Mater, 2016, 6: 1502109 CrossRef Google Scholar

[83] Nian L, Gao K, Liu F, Kan Y, Jiang X, Liu L, Xie Z, Peng X, Russell TP, Ma Y. Adv Mater, 2016, 28: 8184-8190 CrossRef PubMed Google Scholar

[84] Lu H, Zhang JC, Chen JY, Liu Q, Gong X, Feng SY, Xu XJ, Ma W, Bo ZS. Adv Mater, 2016, doi: 10.1002/adma.20160358. Google Scholar

[85] Liu T, Guo Y, Yi YP, Huo LJ, Xue XN, Sun XB, Fu HT, Xiong WT, Meng D, Wang ZH, Liu F, Russell TP, Sun YM. Adv Mater, 2016, doi: 10.1002/adma.20160257. Google Scholar

[86] Cheng P, Yan C, Wu Y, Wang J, Qin M, An Q, Cao J, Huo L, Zhang F, Ding L, Sun Y, Ma W, Zhan X. Adv Mater, 2016, 28: 8021-8028 CrossRef PubMed Google Scholar

[87] Xu X, Li Z, Wang Z, Li K, Feng K, Peng Q. Nano Energy, 2016, 25: 170-183 CrossRef Google Scholar

[88] Liu S, You P, Li J, Li J, Lee CS, Ong BS, Surya C, Yan F. Energy Environ Sci, 2015, 8: 1463-1470 CrossRef Google Scholar

[89] Goh T, Huang JS, Yager KG, Sfeir MY, Nam CY, Tong X, Guard LM, Melvin PR, Antonio F, Bartolome BG, Lee ML, Hazari N, Taylor AD. Adv Energy Mater, 2016, 6: 1600660 CrossRef Google Scholar

[90] An Q, Zhang F, Sun Q, Zhang M, Zhang J, Tang W, Yin X, Deng Z. Nano Energy, 2016, 26: 180-191 CrossRef Google Scholar

[91] Zhang M, Zhang F, An Q, Sun Q, Wang W, Zhang J, Tang W. Nano Energy, 2016, 22: 241-254 CrossRef Google Scholar

[92] Liang Z, Zhang Q, Jiang L, Cao G. Energy Environ Sci, 2015, 8: 3442-3476 CrossRef Google Scholar

[93] Lu J, Cai W, Zhang G, Liu S, Ying L, Huang F. Acta Chim Sin, 2015, 73: 1153-1160 CrossRef Google Scholar

[94] Hu Z, Zhang K, Huang F, Cao Y. Chem Commun, 2015, 51: 5572-5585 CrossRef PubMed Google Scholar

[95] Wang J, Lin K, Zhang K, Jiang XF, Mahmood K, Ying L, Huang F, Cao Y. Adv Energy Mater, 2016, 6: 1502563 CrossRef Google Scholar

[96] Nian L, Zhang W, Wu S, Qin L, Liu L, Xie Z, Wu H, Ma Y. ACS Appl Mater Interfaces, 2015, 7: 25821-25827 CrossRef Google Scholar

[97] Nian L, Chen Z, Herbst S, Li Q, Yu C, Jiang X, Dong H, Li F, Liu L, Würthner F, Chen J, Xie Z, Ma Y. Adv Mater, 2016, 28: 7521-7526 CrossRef PubMed Google Scholar

[98] Yu W, Huang L, Yang D, Fu P, Zhou L, Zhang J, Li C. J Mater Chem A, 2015, 3: 10660-10665 CrossRef Google Scholar

[99] Lin X, Yang Y, Nian L, Su H, Ou J, Yuan Z, Xie F, Hong W, Yu D, Zhang M, Ma Y, Chen X. Nano Energy, 2016, 26: 216-223 CrossRef Google Scholar

[100] Wang Z, Li Z, Xu X, Li Y, Li K, Peng Q. Adv Funct Mater, 2016, 26: 4643-4652 CrossRef Google Scholar

[101] Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004-2013 CrossRef PubMed Google Scholar

[102] Liu J, Li X, Zhang S, Ren X, Cheng J, Zhu L, Zhang D, Huo L, Hou J, Choy WCH. Adv Mater Interfaces, 2015, 2: 1500324 CrossRef Google Scholar

[103] Wan Q. Guo X, Wang ZY, Li WB, Guo B, Ma W, Zhang MJ, Li YF. Adv Funct Mater, 2016, doi: 10.1002/adfm.20160218. Google Scholar

[104] Huang J, Carpenter JH, Li CZ, Yu JS, Ade H, Jen AKY. Adv Mater, 2016, 28: 967-974 CrossRef PubMed Google Scholar

[105] Duan C, Huang F, Cao Y. Polym Chem, 2015, 6: 8081-8098 CrossRef Google Scholar

[106] Li W, Hendriks KH, Roelofs WSC, Kim Y, Wienk MM, Janssen RAJ. Adv Mater, 2013, 25: 3182-3186 CrossRef PubMed Google Scholar

[107] Hu X, Yi C, Wang M, Hsu CH, Liu S, Zhang K, Zhong C, Huang F, Gong X, Cao Y. Adv Energy Mater, 2014, 4: 1400378 CrossRef Google Scholar

[108] Li W, Albrecht S, Yang L, Roland S, Tumbleston JR, McAfee T, Yan L, Kelly MA, Ade H, Neher D, You W. J Am Chem Soc, 2014, 136: 15566-15576 CrossRef PubMed Google Scholar

[109] Lucera L, Machui F, Kubis P, Schmidt HD, Adams J, Strohm S, Ahmad T, Forberich K, Egelhaaf HJ, Brabec CJ. Energy Environ Sci, 2016, 9: 89-94 CrossRef Google Scholar

[110] Zhang K, Hu Z, Xu R, Jiang XF, Yip HL, Huang F, Cao Y. Adv Mater, 2015, 27: 3607-3613 CrossRef PubMed Google Scholar

[111] Li N, Brabec CJ. Energy Environ Sci, 2015, 8: 2902-2909 CrossRef Google Scholar

[112] Cai W, Liu P, Jin Y, Xue Q, Liu F, Russell TP, Huang F, Yip HL, Cao Y. Adv Sci, 2015, 2: 1500095 CrossRef PubMed Google Scholar

[113] Zhang H, Yao H, Zhao W, Ye L, Hou J. Adv Energy Mater, 2016, 6: 1502177 CrossRef Google Scholar

[114] Deng Y, Li W, Liu L, Tian H, Xie Z, Geng Y, Wang F. Energy Environ Sci, 2015, 8: 585-591 CrossRef Google Scholar

[115] Chueh CC, Yao K, Yip HL, Chang CY, Xu YX, Chen KS, Li CZ, Liu P, Huang F, Chen Y, Chen WC, Jen AKY. Energy Environ Sci, 2013, 6: 3241-3248 CrossRef Google Scholar

[116] Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AKY. Adv Mater, 2015, 27: 3310-3317 CrossRef PubMed Google Scholar

  • Figure 1

    Conventional (a) and inverted (b) structures of PSCs; (c) bulk-heterojunction morphology of the active layer; (d) chemical structures of P3HT and PC71BM (color online).

  • Scheme 1

    Chemical structures of PTB series conjugated polymers (color online).

  • Scheme 2

    Chemical structures of donor polymers (color online).

  • Figure 2

    (a) Temperature-dependent aggregation behavior of PffBT4T-2OD; (b) current density-voltage curves of PffBT4T-2OD:PC71BM based device; (c, d) schematic illustrations of PNTz4T/PC61BM blend films in conventional (c) and inverted (d) PSCs [58,65] (color online).

  • Figure 3

    (a) Schematic illustration of PSCs with the dual-sided nanoimprinted DANs [55]; (b) schematic illustration of PSC structure with Ag NPs near ITO electrode [56]; (c) schematic illustration of inverted off-center spin-coating method [104] (color online).

  • Scheme 3

    Chemical structures of part polymers and small molecules (color online).

  • Scheme 4

    Chemical structures of polymers and small molecules in ternary solar cells.

  • Scheme 5

    Chemical structures of dopants to ZnO and interfacial materials.

  • Table 1   Basic properties of high-performance donor materials and their photovoltaic parameters

    Donors

    Band gap Eg (eV)

    EHOMO

    ELUMO

    Mobility

    Voc (V)

    Jsc (mA cm−2)

    FF

    PCE

    Ref.

    PTB7

    1.63

    −5.15

    −3.52

    5.8×10−4

    0.74

    14.5

    0.69

    7.4%

    [37]

    PTB7-Th

    1.58

    −5.22

    −3.64

    7.1×10−4

    0.80

    15.7

    0.74

    9.35%

    [38]

    PBDTT-S-TT

    1.57

    −5.41

    −3.27

    4.1×10−3

    0.84

    15.3

    0.65

    8.42%

    [39]

    PBDT-TS1

    1.57

    −5.33

    −3.52

    1.0×10−2

    0.80

    17.5

    0.68

    9.48%

    [40]

    PffBT4T-2OD

    1.65

    −5.34

    −3.69

    1.7×10−2

    0.77

    18.8

    0.75

    10.8%

    [58]

    PBTff4T-2OD

    1.63

    −5.20

    −3.57

    0.77

    18.2

    0.74

    10.4%

    [58]

    PNT4T-2OD

    1.53

    −5.24

    −3.57

    0.76

    19.8

    0.68

    10.1%

    [58]

    PffBT-T3(1,2)-1

    1.63

    −5.31

    −3.68

    1.2×10−3

    0.82

    18.7

    0.68

    10.7%

    [60]

    PffBT4T-C9C13

    1.65

    −5.34

    −3.69

    7.0×10−3

    0.7

    19.8

    0.73

    11.7%

    [61]

    NT812

    1.40

    −5.29

    −3.40

    2.7×10−2

    0.72

    19.1

    0.72

    10.33%

    [62]

    PNTz4T

    1.56

    −5.14

    −3.46

    3.4×10−3

    0.71

    19.4

    0.73

    10.1%

    [65]

    PNTz4TF2

    1.60

    −5.38

    −3.53

    1.5×10−3

    0.82

    19.3

    0.67

    10.5%

    [63]

    DRCN5T

    1.60

    −5.22

    −3.41

    6.5×10−4

    0.92

    15.7

    0.68

    10.08%

    [78]

  • Table 2   Photovoltaic parameters of non-fullerene PSCs and ternary solar cells

    Donor/Acceptor

    Device structure

    Voc (V)

    Jsc (mA cm−2)

    FF (%)

    PCE

    Ref.

    PBDB-T/ITIC

    ITO/ZnO/Active layer/MoO3/Al

    0.90

    16.81

    0.74

    11.2%

    [73]

    PBDB-T/IT-M

    0.94

    17.44

    0.74

    12.05%

    [74]

    PBDB-T/IT-DM

    0.97

    16.48

    0.71

    11.29%

    [74]

    PDCBT/ITIC

    ITO/PEDOT:PSS/Active layer/PFN-Br/Al

    0.94

    16.50

    0.66

    10.16%

    [75]

    PTB7-Th/p-DTS-(FBTTH2)2/PC71BM

    ITO/ZnO/active layer/MoOx/Ag

    0.755

    18.44

    0.75

    10.5%

    [81]

    PTB7-Th/PDBT-T1/PC71BM

    ITO/PEDOT:PSS/Active layer/Ca/Al

    0.81

    17.8

    0.70

    10.2%

    [82]

    PTB7/DPPEZnP-TEH/PC71BM

    ITO/ZnO:PBI-H/PTB7:DPPEZnP-TEH:PC71BM/MoO3/Al

    0.769

    18.68

    0.75

    10.79%

    [83]

    PPBDTBT/ITIC/PC71BM

    ITO/ZnO/PFN-OX/active layer/MoO3/Ag

    0.89

    16.66

    0.68

    10.35%

    [84]

    PDBT-T1/SdiPBI-Se/ITIC-Th

    ITO/PEDOT:PSS/Active layer/Ca/Al

    0.93

    15.37

    0.70

    10.27%

    [85]

    PTB7-Th /PC71BM/ICBA

    ITO/PEDOT:PSS/Active layer/Ca/Al

    0.83

    17.90

    0.69

    10.5%

    [86]

    PBDTTA-DAPT/PTB7/PC71BM/ICBA

    ITO/PEDOT:PSS/Active layer/Ca/Al

    0.75

    17.99

    0.76

    10.2%

    [87]

    PTB7-Th/PDVT-10/PC71BM

    ITO/PEDOT:PSS/Active layer/Ca/Al

    0.777

    18.74

    0.71

    10.08

    [88]

    PTB7-Th/ASSQ/DPSQ/PC71BM

    ITO/ZnO/PFN/active layer/MoO3/Ag

    0.789

    17.82

    0.72

    10.7%

    [89]

  • Table 3   Photovoltaic parameters of high-performance PSCs enabled by interface engineering

    ETL/CIL/HTL

    Device structure

    Voc (V)

    Jsc (mA cm−2)

    FF

    PCE

    Ref.

    ZnO:(BisNPC60-OH+InCl3)

    ITO/ETL/PTB7-Th:PC71BM/MoO3/Ag

    0.80

    17.24

    0.74

    10.22%

    [46]

    ZnO/PCMI:K+

    ITO/ETL/PTB7-Th:PC71BM/MoO3/Ag

    0.787

    19.57

    0.67

    10.30%

    [47]

    Al-doped ZnO

    ITO/ETL/PBDTTT-C-T-EFT:PC70BM/MoO3/Ag

    0.80

    17.7

    0.71

    10.16%

    [48]

    ZnO:Li2CO3

    ITO/ETL/PTB7:PC71BM/MoO3/Ag

    0.73

    18.93

    0.73

    10.08%

    [49]

    ZnO:PBI:H

    ITO/ETL/PTB7-Th:PC71BM/MoO3/Ag

    0.815

    17.54

    0.73

    10.59%

    [50]

    ZnO:PBI-Py

    ITO/ETL/FBT-Th4(1,4):PC71BM/MoO3/Al

    0.77

    18.53

    0.73

    10.65%

    [97]

    ZnO/[BMIM]BF4

    ITO/ETL/PTB7-Th:PC71BM/MoO3/Ag

    0.78

    17.43

    0.74

    10.15%

    [98]

    ZnO/PEOz

    ITO/ETLPTB7-Th:PC71BM/MoO3/Ag

    0.794

    19.0

    0.71

    10.74%

    [51]

    AZO/carbon dots

    ITO/ETL/PTB7-Th:PC71BM/MoO3/Al

    0.80

    18.12

    0.71

    10.24%

    [99]

    MSAPBS

    ITO/PEDOT:PSS/PTB7:PC71BM/ETL/Al

    0.76

    19.25

    0.68

    10.02%

    [52]

    TFB

    ITO/PEDOT:PSS/PTB7:PC71BM/CIL/Al

    0.78

    17.57

    0.74

    10.1%

    [100]

    PT2NDISB

    ITO/PEDOT:PSS/PBDTT-TT:PC71BM/CIL/Al

    0.76

    18.84

    0.69

    10.19%

    [53]

    PNDIT-F3N-Br

    ITO/PEDOT:PSS/PTB7:PC71BM/CIL/Al

    0.77

    17.64

    0.72

    10.11%

    [101]

    (f-SWCNT) mesh/SAM

    ITO/HTL/PBDT-TS1:PC71BM/ZnO/Al

    0.783

    20.5

    0.65

    10.5%

    [102]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1