logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 904-911(2017) https://doi.org/10.1007/s11426-016-0442-5

Lewis base-CO2 adducts as organocatalysts for CO2 transformation

More info
  • ReceivedNov 1, 2016
  • AcceptedDec 5, 2016
  • PublishedApr 1, 2017

Abstract

In the recent decade, the development and application of organocatalysis for CO2 transformation into useful chemicals have attracted much attention. Among these organocatalysts, Lewis base-CO2 adducts (LB-CO2) were found to be more efficient. The used Lewis base has great effect on the catalytic activity of its CO2 adduct. This review reports the recent progress in LB-CO2 adducts catalyzed the cyclization of CO2 with epoxides or aziridines to afford cyclic carbonates or oxazolidinones, the carboxylation of CO2 with propargylic alcohols to α-alkylidene cyclic carbonates, and the reduction of CO2 to methanol, formamides and methylamines, with the focus on the catalytic mechanism.


Funded by

National Natural Science Foundation of China(21402021)

Program for Changjiang Scholars and Innovative Research Team in University(IRT13008. X. B. Lu gratefully acknowledges the Chang Jiang Scholars Program (T2011056)

People’s Republic of China.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21402021), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13008). X. B. Lu gratefully acknowledges the Chang Jiang Scholars Program (T2011056) from Ministry of Education, People’s Republic of China.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Hileman B. Chem Eng News, 1995, 73: 18-23 CrossRef Google Scholar

[2] Hileman B. Chem Eng News, 1997, 75: 8–16. Google Scholar

[3] Solomon S, Plattner GK, Knutti R, Friedlingstein P. Proc Natl Acad Sci USA, 2009, 106: 1704-1709 CrossRef PubMed ADS Google Scholar

[4] Sakakura T, Choi JC, Yasuda H. Chem Rev, 2007, 107: 2365-2387 CrossRef PubMed Google Scholar

[5] Darensbourg DJ. Chem Rev, 2007, 107: 2388-2410 CrossRef PubMed Google Scholar

[6] Lu XB, Darensbourg DJ. Chem Soc Rev, 2012, 41: 1462-1484 CrossRef PubMed Google Scholar

[7] Yang ZZ, He LN, Gao J, Liu AH, Yu B. Energy Environ Sci, 2012, 5: 6602-6639 CrossRef Google Scholar

[8] Aresta M, Dibenedetto A, Angelini A. Chem Rev, 2014, 114: 1709-1742 CrossRef PubMed Google Scholar

[9] Dibenedetto A, Angelini A, Stufano P. J Chem Technol Biotechnol, 2014, 89: 334-353 CrossRef Google Scholar

[10] Yang L, Wang H. ChemSusChem, 2014, 7: 962-998 CrossRef PubMed Google Scholar

[11] Yu B, He LN. ChemSusChem, 2015, 8: 52-62 CrossRef PubMed Google Scholar

[12] Lu XB, Ren WM, Wu GP. Acc Chem Res, 2012, 45: 1721-1735 CrossRef PubMed Google Scholar

[13] Fiorani G, Guo W, Kleij AW. Green Chem, 2015, 17: 1375-1389 CrossRef Google Scholar

[14] Murphy LJ, Robertson KN, Kemp RA, Tuononen HM, Clyburne JAC. Chem Commun, 2015, 51: 3942-3956 CrossRef PubMed Google Scholar

[15] Maeda C, Miyazaki Y, Ema T. Catal Sci Technol, 2014, 4: 1482-1497 CrossRef Google Scholar

[16] Palmer DA, Van Eldik R. Chem Rev, 1983, 83: 651-731 CrossRef Google Scholar

[17] Braunstein P, Matt D, Nobel D. Chem Rev, 1988, 88: 747-764 CrossRef Google Scholar

[18] Cutler AR, Hanna PK, Vites JC. Chem Rev, 1988, 88: 1363-1403 CrossRef Google Scholar

[19] Leitner W. Coordin Chem Rev, 1996, 153: 257-284 CrossRef Google Scholar

[20] Yin X, Moss JR. Coordin Chem Rev, 1999, 181: 27-59 CrossRef Google Scholar

[21] Gibson DH. Chem Rev, 1996, 96: 2063-2096 CrossRef Google Scholar

[22] Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan DW, Erker G. Angew Chem Int Ed, 2009, 48: 6643-6646 CrossRef PubMed Google Scholar

[23] Dureen MA, Stephan DW. J Am Chem Soc, 2010, 132: 13559-13568 CrossRef PubMed Google Scholar

[24] Ménard G, Stephan DW. J Am Chem Soc, 2010, 132: 1796-1797 CrossRef PubMed Google Scholar

[25] Stephan DW, Erker G. Angew Chem Int Ed, 2010, 49: 46-76 CrossRef PubMed Google Scholar

[26] Hounjet LJ, Caputo CB, Stephan DW. Angew Chem Int Ed, 2012, 51: 4714-4717 CrossRef PubMed Google Scholar

[27] Courtemanche MA, Légaré MA, Maron L, Fontaine FG. J Am Chem Soc, 2013, 135: 9326-9329 CrossRef PubMed Google Scholar

[28] Courtemanche MA, Légaré MA, Maron L, Fontaine FG. J Am Chem Soc, 2014, 136: 10708-10717 CrossRef PubMed Google Scholar

[29] Stephan DW. J Am Chem Soc, 2015, 137: 10018-10032 CrossRef PubMed Google Scholar

[30] Metters OJ, Forrest SJK, Sparkes HA, Manners I, Wass DF. J Am Chem Soc, 2016, 138: 1994-2003 CrossRef PubMed Google Scholar

[31] Lan DH, Fan N, Wang Y, Gao X, Zhang P, Chen L, Au CT, Yin SF. Chin J Catal, 2016, 37: 826-845 CrossRef Google Scholar

[32] Villiers C, Dognon JP, Pollet R, Thuéry P, Ephritikhine M. Angew Chem Int Ed, 2010, 49: 3465-3468 CrossRef PubMed Google Scholar

[33] Xin Z, Lescot C, Friis SD, Daasbjerg K, Skrydstrup T. Angew Chem Int Ed, 2015, 54: 6862-6866 CrossRef PubMed Google Scholar

[34] Kuhn N, Steimann M, Weyers G. Z Naturforsch B, 1999, 54: 427-433 CrossRef Google Scholar

[35] Duong HA, Tekavec TN, Arif AM, Louie J. Chem Commun, 2004, : 112 CrossRef PubMed Google Scholar

[36] Aldeco-Perez E, Rosenthal AJ, Donnadieu B, Parameswaran P, Frenking G, Bertrand G. Science, 2009, 326: 556-559 CrossRef PubMed ADS Google Scholar

[37] Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J. J Org Chem, 2009, 74: 7935-7942 CrossRef PubMed Google Scholar

[38] Zhou H, Zhang WZ, Liu CH, Qu JP, Lu XB. J Org Chem, 2008, 73: 8039-8044 CrossRef PubMed Google Scholar

[39] Delaude L. Eur J Inorg Chem, 2009, 2009: 1681-1699 CrossRef Google Scholar

[40] Pinaud J, Vignolle J, Gnanou Y, Taton D. Macromolecules, 2011, 44: 1900-1908 CrossRef ADS Google Scholar

[41] Guo Z, Song NR, Moon JH, Kim M, Jun EJ, Choi J, Lee JY, Bielawski CW, Sessler JL, Yoon J. J Am Chem Soc, 2012, 134: 17846-17849 CrossRef PubMed Google Scholar

[42] Wang YB, Wang YM, Zhang WZ, Lu XB. J Am Chem Soc, 2013, 135: 11996-12003 CrossRef PubMed Google Scholar

[43] Wang YB, Sun DS, Zhou H, Zhang WZ, Lu XB. Green Chem, 2015, 17: 4009-4015 CrossRef Google Scholar

[44] Crocker RD, Nguyen TV. Chem Eur J, 2016, 22: 2208-2213 CrossRef PubMed Google Scholar

[45] Saptal VB, Bhanage BM. ChemSusChem, 2016, 9: 1980-1985 CrossRef PubMed Google Scholar

[46] Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T. Org Lett, 2010, 12: 5728-5731 CrossRef PubMed Google Scholar

[47] Wang YB, Sun DS, Zhou H, Zhang WZ, Lu XB. Green Chem, 2014, 16: 2266-2272 CrossRef Google Scholar

[48] Buß F, Mehlmann P, Mück-Lichtenfeld C, Bergander K, Dielmann F. J Am Chem Soc, 2016, 138: 1840-1843 CrossRef PubMed Google Scholar

[49] Zheng J, Cai J, Lin JH, Guo Y, Xiao JC. Chem Commun, 2013, 49: 7513-7515 CrossRef PubMed Google Scholar

[50] Walsh AD. J Chem Soc, 1953: 2260–2266. Google Scholar

[51] Spielfiedel A, Feautrier N, Cossart-Magos C, Chambaud G, Rosmus P, Werner HJ, Botschwina P. J Chem Phys, 1992, 97: 8382-8388 CrossRef ADS Google Scholar

[52] Mohammed HH, Fournier J, Deson J, Vermeil C. Chem Phys Lett, 1980, 73: 315-318 CrossRef ADS Google Scholar

[53] Cossart-Magos C, Launay F, Parkin JE. Mol Phys, 1992, 75: 835-856 CrossRef Google Scholar

[54] Holbrey JD, Reichert WM, Tkatchenko I, Bouajila E, Walter O, Tommasi I, Rogers RD. Chem Commun, 2003, : 28-29 CrossRef Google Scholar

[55] Theuergarten E, Bannenberg T, Walter MD, Holschumacher D, Freytag M, Daniliuc CG, Jones PG, Tamm M. Dalton Trans, 2014, 43: 1651-1662 CrossRef PubMed Google Scholar

[56] Zhou H, Wang GX, Zhang WZ, Lu XB. ACS Catal, 2015, 5: 6773-6779 CrossRef Google Scholar

[57] Shaikh AAG, Sivaram S. Chem Rev, 1996, 96: 951-976 CrossRef Google Scholar

[58] Clements JH. Ind Eng Chem Res, 2003, 42: 663-674 CrossRef Google Scholar

[59] Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem Rev, 2010, 110: 4554-4581 CrossRef PubMed Google Scholar

[60] Zhou H, Wang YM, Zhang WZ, Qu JP, Lu XB. Green Chem, 2011, 13: 644-650 CrossRef Google Scholar

[61] Kayaki Y, Yamamoto M, Ikariya T. Angew Chem Int Ed, 2009, 48: 4194-4197 CrossRef PubMed Google Scholar

[62] Ajitha MJ, Suresh CH. Tetrahedron Lett, 2011, 52: 5403-5406 CrossRef Google Scholar

[63] Whiteoak C, Kleij A. Synlett, 2013, 24: 1748-1756 CrossRef Google Scholar

[64] Martín C, Fiorani G, Kleij AW. ACS Catal, 2015, 5: 1353-1370 CrossRef Google Scholar

[65] Phoon CW, Abell C. Tetrahedron Lett, 1998, 39: 2655-2658 CrossRef Google Scholar

[66] Fluit AC. J Antimicrob Chemoth, 2002, 50: 271-276 CrossRef Google Scholar

[67] Gawley RE, Campagna SA, Santiago M, Ren T. Tetrahedron-Asymmetr, 2002, 13: 29-36 CrossRef Google Scholar

[68] Hoellman DB, Lin G, Ednie LM, Rattan A, Jacobs MR, Appelbaum PC. Antimicrob Agents Ch, 2003, 47: 1148-1150 CrossRef Google Scholar

[69] Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS. J Biol Chem, 2003, 278: 21972-21979 CrossRef PubMed Google Scholar

[70] Seayad J, Seayad AM, Ng JKP, Chai CLL. ChemCatChem, 2012, 4: 774-777 CrossRef Google Scholar

[71] Toullec P, Carbayo Martin A, Gio-Batta M, Bruneau C, Dixneuf PH. Tetrahedron Lett, 2000, 41: 5527-5531 CrossRef Google Scholar

[72] Ochiai B, Endo T. Prog Polymer Sci, 2005, 30: 183-215 CrossRef Google Scholar

[73] Tommasi I, Sorrentino F. Tetrahedron Lett, 2009, 50: 104-107 CrossRef Google Scholar

[74] Yan ZE, Huo RP, Guo L, Zhang X. J Mol Model, 2016, 22: 94 CrossRef PubMed Google Scholar

[75] Li W, Yang N, Lyu Y. J Org Chem, 2016, 81: 5303-5313 CrossRef PubMed Google Scholar

[76] Fontaine FG, Courtemanche MA, Légaré MA. Chem Eur J, 2014, 20: 2990-2996 CrossRef PubMed Google Scholar

[77] Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem, 2015, 17: 157-168 CrossRef Google Scholar

[78] Yang Y, Xu M, Song D. Chem Commun, 2015, 51: 11293-11296 CrossRef PubMed Google Scholar

[79] Riduan SN, Zhang Y, Ying JY. Angew Chem Int Ed, 2009, 48: 3322-3325 CrossRef PubMed Google Scholar

[80] Riduan SN, Ying JY, Zhang Y. ChemCatChem, 2013, 5: 1490-1496 CrossRef Google Scholar

[81] Huang F, Lu G, Zhao L, Li H, Wang ZX. J Am Chem Soc, 2010, 132: 12388-12396 CrossRef PubMed Google Scholar

[82] Zhou Q, Li Y. J Am Chem Soc, 2015, 137: 10182-10189 CrossRef PubMed Google Scholar

[83] Zhang X, Jia YB, Lu XB, Li B, Wang H, Sun LC. Tetrahedron Lett, 2008, 49: 6589-6592 CrossRef Google Scholar

[84] Ren WM, Liu Y, Lu XB. J Org Chem, 2014, 79: 9771-9777 CrossRef PubMed Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1