logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 887-903(2017) https://doi.org/10.1007/s11426-016-0464-1

Advances in direct production of value-added chemicals viasyngas conversion

More info
  • ReceivedNov 11, 2016
  • AcceptedDec 27, 2016
  • PublishedApr 26, 2017

Abstract

Syngas conversion to fuels and chemicals is one of the most challenging subjects in the field of C1 chemistry. It is considered as an attractive alternative non-petroleum-based production route. The direct synthesis of olefins and alcohols as high value-added chemicals from syngas has drawn particular attention due to its process simplicity, low energy consumption and clean utilization of carbon resource, which conforms to the principles of green carbon science. This review describes the recent advances for the direct production of lower olefins and higher alcohols via syngas conversion. Recent progress in the development of new catalyst systems for enhanced catalytic performance is highlighted. We also give recommendations regarding major challenges for further research in syngas conversion to various chemicals.


Funded by

This work was supported by the National Natural Science Foundation of China(91545112,21573271,21403278)

Shanghai Municipal Science and Technology Commission

China(15DZ1170500,the Chinese Academy of Sciences (QYZDB-SSW-SLH035)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (91545112, 21573271, 21403278), Shanghai Municipal Science and Technology Commission, China (15DZ1170500), and the Chinese Academy of Sciences (QYZDB-SSW-SLH035).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620-9633 CrossRef PubMed Google Scholar

[2] Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press, 1998. Google Scholar

[3] Tang SLY, Smith RL, Poliakoff M. Green Chem, 2005, 7: 761-762 CrossRef Google Scholar

[4] Horváth IT, Anastas PT. Chem Rev, 2007, 107: 2169-2173 CrossRef PubMed Google Scholar

[5] Li CJ, Anastas PT. Chem Soc Rev, 2012, 41: 1413 CrossRef PubMed Google Scholar

[6] Sheldon RA. Chem Commun, 2008, : 3352 CrossRef PubMed Google Scholar

[7] Calvo-Flores FG. ChemSusChem, 2009, 2: 905-919 CrossRef PubMed Google Scholar

[8] Tang SY, Bourne RA, Smith RL, Poliakoff M. Green Chem, 2008, 10: 268-269 CrossRef Google Scholar

[9] Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD. Nature, 2010, 463: 559-562 CrossRef PubMed ADS Google Scholar

[10] Schilling LB, Landucci R. FEMS Microbiol Rev, 1995, 16: 101-110 CrossRef Google Scholar

[11] Ren T, Patel MK. Resour Conserv Recy, 2009, 53: 513-528 CrossRef Google Scholar

[12] Schobert HH, Song C. Fuel, 2002, 81: 15-32 CrossRef Google Scholar

[13] Khodakov AY, Chu W, Fongarland P. Chem Rev, 2007, 107: 1692-1744 CrossRef PubMed Google Scholar

[14] Demirbaş A. Energy Conv Manag, 2001, 42: 1357-1378 CrossRef Google Scholar

[15] Saxena RC, Adhikari DK, Goyal HB. Renew Sust Energ Rev, 2009, 13: 167-178 CrossRef Google Scholar

[16] Binder JB, Raines RT. J Am Chem Soc, 2009, 131: 1979-1985 CrossRef PubMed Google Scholar

[17] Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A. Chem Soc Rev, 2011, 40: 5266-5281 CrossRef PubMed Google Scholar

[18] Wang H, Gao P, Zhao T, Wei W, Sun Y. Sci China Chem, 2015, 58: 79-92 CrossRef Google Scholar

[19] Ail SS, Dasappa S. Renew Sust Energ Rev, 2016, 58: 267-286 CrossRef Google Scholar

[20] Shah M, Dai JJ, Guo QX, Fu Y. Sci China Chem, 2015, 58: 1110-1121 CrossRef Google Scholar

[21] Cerqueira HS, Caeiro G, Costa L, Ramôa Ribeiro F. J Mol Catal A-Chem, 2008, 292: 1-13 CrossRef Google Scholar

[22] Corma A, Sauvanaud L, Doskocil E, Yaluris G. J Catal, 2011, 279: 183-195 CrossRef Google Scholar

[23] Corma A, Melo FV, Sauvanaud L, Ortega F. Catal Today, 2005, 107-108: 699-706 CrossRef Google Scholar

[24] Torres Galvis HM, de Jong KP. ACS Catal, 2013, 3: 2130-2149 CrossRef Google Scholar

[25] Tian P, Wei Y, Ye M, Liu Z. ACS Catal, 2015, 5: 1922-1938 CrossRef Google Scholar

[26] Yu F, Li ZJ, An YL, Gao P, Zhong LS, Sun YH. J Fuel Chem Technol, 2016, 44: 801–814. Google Scholar

[27] Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S. Catal Today, 2005, 106: 103-107 CrossRef Google Scholar

[28] Dahl IM, Kolboe S. Catal Lett, 1993, 20: 329-336 CrossRef Google Scholar

[29] Hereijgers BPC, Bleken F, Nilsen MH, Svelle S, Lillerud KP, Bjørgen M, Weckhuysen BM, Olsbye U. J Catal, 2009, 264: 77-87 CrossRef Google Scholar

[30] Wang W, Jiang Y, Hunger M. Catal Today, 2006, 113: 102-114 CrossRef Google Scholar

[31] Ying L, Yuan X, Ye M, Cheng Y, Li X, Liu Z. Chem Eng Res Des, 2015, 100: 179-191 CrossRef Google Scholar

[32] Zhang SC, Yu FC. Corros Protect Petrochem Ind, 2016, 33: 5–7. Google Scholar

[33] La-shan C. Chem Fertil Design, 2008, 46: 3–6. Google Scholar

[34] Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP. Angew Chem Int Ed, 2012, 51: 5810-5831 CrossRef PubMed Google Scholar

[35] Peng X, Cheng K, Kang J, Gu B, Yu X, Zhang Q, Wang Y. Angew Chem Int Ed, 2015, 54: 4553-4556 CrossRef PubMed Google Scholar

[36] Bao J, He J, Zhang Y, Yoneyama Y, Tsubaki N. Angew Chem, 2008, 120: 359-362 CrossRef Google Scholar

[37] Kang J, Cheng K, Zhang L, Zhang Q, Ding J, Hua W, Lou Y, Zhai Q, Wang Y. Angew Chem Int Ed, 2011, 50: 5200-5203 CrossRef PubMed Google Scholar

[38] Sartipi S, Makkee M, Kapteijn F, Gascon J. Catal Sci Technol, 2014, 4: 893-907 CrossRef Google Scholar

[39] Ma X, Ge Q, Ma J, Xu H. Fuel Process Technol, 2013, 109: 1-6 CrossRef Google Scholar

[40] Fujimoto K, Saima H, Tominaga H. J Catal, 1985, 94: 16-23 CrossRef Google Scholar

[41] Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K. Fuel Process Technol, 2004, 85: 1139-1150 CrossRef Google Scholar

[42] de Jong KP. Science, 2016, 351: 1030-1031 CrossRef PubMed ADS Google Scholar

[43] Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X. Science, 2016, 351: 1065-1068 CrossRef PubMed ADS Google Scholar

[44] Cheng K, Gu B, Liu X, Kang J, Zhang Q, Wang Y. Angew Chem Int Ed, 2016, 55: 4725-4728 CrossRef PubMed Google Scholar

[45] Schulz H. Appl Catal A-Gen, 1999, 186: 3-12 CrossRef Google Scholar

[46] Zhang R, Liu F, Wang Q, Wang B, Li D. Appl Catal A-Gen, 2016, 525: 76-84 CrossRef Google Scholar

[47] Fischer FTH. Brennstoff-Chem, 1926, 7: 97–104. Google Scholar

[48] Fischer FTH. Ber Dtsch Chem Ges, 1926, 59B: 830–831. Google Scholar

[49] Okeson TJ, Keyvanloo K, Lawson JS, Argyle MD, Hecker WC. Catal Today, 2016, 261: 67-74 CrossRef Google Scholar

[50] Brady RC, Pettit R. J Am Chem Soc, 1981, 103: 1287-1289 CrossRef Google Scholar

[51] Van Der Laan GP, Beenackers AACM. Catal Rev, 1999, 41: 255-318 CrossRef Google Scholar

[52] Zhang Q, Kang J, Wang Y. ChemCatChem, 2010, 2: 1030-1058 CrossRef Google Scholar

[53] Koeken ACJ, Torres Galvis HM, Davidian T, Ruitenbeek M, de Jong KP. Angew Chem Int Ed, 2012, 51: 7190-7193 CrossRef PubMed Google Scholar

[54] Dry ME, Erasmus HBW. Annu Rev Energy, 1987, 12: 1–21. Google Scholar

[55] Hu B, Frueh S, Garces HF, Zhang L, Aindow M, Brooks C, Kreidler E, Suib SL. Appl Catal B-Environ, 2013, 132–133: 54-61 CrossRef Google Scholar

[56] Schulte HJ, Graf B, Xia W, Muhler M. ChemCatChem, 2012, 4: 350-355 CrossRef Google Scholar

[57] Jiang N, Yang G, Zhang X, Wang L, Shi C, Tsubaki N. Catal Commun, 2011, 12: 951-954 CrossRef Google Scholar

[58] Iglesia E, Soled SL, Fiato RA. J Catal, 1992, 137: 212–224. Google Scholar

[59] Hadadzadeh H, Mirzaei AA, Morshedi M, Raeisi A, Feyzi M, Rostamizadeh N. Pet Chem, 2010, 50: 78-86 CrossRef Google Scholar

[60] Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C. Ind Eng Chem Res, 1990, 29: 1588-1599 CrossRef Google Scholar

[61] Farzad S, Haghtalab A, Rashidi A. J Energy Chem, 2013, 22: 573-581 CrossRef Google Scholar

[62] Zhang C, Yang Y, Teng B, Li T, Zheng H, Xiang H, Li Y. J Catal, 2006, 237: 405-415 CrossRef Google Scholar

[63] Bukur DB, Mukesh D, Patel SA. Ind Eng Chem Res, 1990, 29: 194-204 CrossRef Google Scholar

[64] Sachtler W. J Catal, 1985, 92: 429-431 CrossRef Google Scholar

[65] Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP. Science, 2012, 335: 835-838 CrossRef PubMed ADS Google Scholar

[66] Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP. J Catal, 2013, 303: 22-30 CrossRef Google Scholar

[67] Torres Galvis HM, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP. J Am Chem Soc, 2012, 134: 16207-16215 CrossRef PubMed Google Scholar

[68] Oschatz M, Lamme WS, Xie J, Dugulan AI, de Jong KP. ChemCatChem, 2016, 8: 2846-2852 CrossRef Google Scholar

[69] Xie J, Torres Galvis HM, Koeken ACJ, Kirilin A, Dugulan AI, Ruitenbeek M, de Jong KP. ACS Catal, 2016, 6: 4017-4024 CrossRef PubMed Google Scholar

[70] Zhou X, Ji J, Wang D, Duan X, Qian G, Chen D, Zhou X. Chem Commun, 2015, 51: 8853-8856 CrossRef PubMed Google Scholar

[71] Bussemeier B, Frohning CD, Cornils B. Hydrocarb Process, 1976, 56: 105−112. Google Scholar

[72] Bussemeier B, Frohning CD, Horn G, Kluy W. Process for the production of unsaturated hydro-carbons. US Patent, 4455395, 1984-6-19. Google Scholar

[73] Venter J. J Catal, 1987, 103: 450-465 CrossRef Google Scholar

[74] Roy SC, Prasad HL, Dutta P, Bhattacharya A, Singh B, Kumar S, Maharaj S, Kaushik VK, Muthukumaru Pillai S, Ravindranathan M. Appl Catal A-Gen, 2001, 220: 153-164 CrossRef Google Scholar

[75] Yang Z, Pan X, Wang J, Bao X. Catal Today, 2012, 186: 121-127 CrossRef Google Scholar

[76] Liu Y, Chen JF, Bao J, Zhang Y. ACS Catal, 2015, 5: 3905-3909 CrossRef Google Scholar

[77] Huo CF, Li YW, Wang J, Jiao H. J Am Chem Soc, 2009, 131: 14713-14721 CrossRef PubMed Google Scholar

[78] Gao X, Zhang J, Chen N, Ma Q, Fan S, Zhao T, Tsubaki N. Chin J Catal, 2016, 37: 510-516 CrossRef Google Scholar

[79] Duan X, Wang D, Qian G, Walmsley JC, Holmen A, Chen D, Zhou X. J Energ Chem, 2016, 25: 311-317 CrossRef Google Scholar

[80] Wang D, Zhou X, Ji J, Duan X, Qian G, Zhou X, Chen D, Yuan W. J Mater Chem A, 2015, 3: 4560-4567 CrossRef Google Scholar

[81] Xu JD, Zhu KT, Weng XF, Weng WZ, Huang CJ, Wan HL. Catal Today, 2013, 215: 86-94 CrossRef Google Scholar

[82] Sommen APB, Stoop F, Van Der Wiele K. Appl Catal, 1985, 14: 277-288 CrossRef Google Scholar

[83] Jones VK, Neubauer LR, Bartholomew CH. J Phys Chem, 1986, 90: 4832-4839 CrossRef Google Scholar

[84] Zhang JC, Wei GB, Cao WL. Chin J Catal, 2003, 24: 259–264. Google Scholar

[85] Chen X, Deng D, Pan X, Hu Y, Bao X. Chem Commun, 2015, 51: 217-220 CrossRef PubMed Google Scholar

[86] Lu J, Yang L, Xu B, Wu Q, Zhang D, Yuan S, Zhai Y, Wang X, Fan Y, Hu Z. ACS Catal, 2014, 4: 613-621 CrossRef Google Scholar

[87] Wan H, Wu B, Zhang C, Xiang H, Li Y. J Mol Catal A-Chem, 2008, 283: 33-42 CrossRef Google Scholar

[88] Zhai P, Xu C, Gao R, Liu X, Li M, Li W, Fu X, Jia C, Xie J, Zhao M, Wang X, Li YW, Zhang Q, Wen XD, Ma D. Angew Chem Int Ed, 2016, 55: 9902-9907 CrossRef PubMed Google Scholar

[89] Tsakoumis NE, Rønning M, Borg Ø, Rytter E, Holmen A. Catal Today, 2010, 154: 162-182 CrossRef Google Scholar

[90] Fraenkel D, Gates BC. J Am Chem Soc, 1980, 102: 2478-2480 CrossRef Google Scholar

[91] Mirzaei AA, Faizi M, Habibpour R. Appl Catal A-Gen, 2006, 306: 98-107 CrossRef Google Scholar

[92] Chen H, Adesina AA. Appl Catal A-Gen, 1994, 112: 87-103 CrossRef Google Scholar

[93] Feyzi M, Khodaei MM, Shahmoradi J. Fuel Processing Technol, 2012, 93: 90-98 CrossRef Google Scholar

[94] Das D, Ravichandran G, Chakrabarty DK. Appl Catal A-Gen, 1995, 131: 335-345 CrossRef Google Scholar

[95] Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, Lin T, Lin Y, Qi X, Dai Y, Gu L, Hu J, Jin S, Shen Q, Wang H. Nature, 2016, 538: 84-87 CrossRef PubMed ADS Google Scholar

[96] Claeys M. Nature, 2016, 538: 44-45 CrossRef PubMed ADS Google Scholar

[97] Herman RG. Catal Today, 2000, 55: 233-245 CrossRef Google Scholar

[98] Jiao G, Ding Y, Zhu H, Li X, Li J, Lin R, Dong W, Gong L, Pei Y, Lu Y. Appl Catal A-Gen, 2009, 364: 137-142 CrossRef Google Scholar

[99] Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y. Catal Today, 2009, 147: 133-138 CrossRef Google Scholar

[100] Slaa JC, van Ommen JG, Ross JRH. Catal Today, 1992, 15: 129-148 CrossRef Google Scholar

[101] Liu YJ, Zuo ZJ, Liu CB, Li C, Deng X, Huang W. Fuel Processing Technol, 2016, 144: 186-190 CrossRef Google Scholar

[102] Liu Y, Liu C, Li C, Huang W. Catal Commun, 2016, 76: 29-32 CrossRef Google Scholar

[103] Sun J, Wan S, Wang F, Lin J, Wang Y. Ind Eng Chem Res, 2015, 54: 7841-7851 CrossRef Google Scholar

[104] Xiao K, Qi X, Bao Z, Wang X, Zhong L, Fang K, Lin M, Sun Y. Catal Sci Technol, 2013, 3: 1591-1602 CrossRef Google Scholar

[105] Xiao K, Bao Z, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y. Chin J Catal, 2013, 34: 116-129 CrossRef Google Scholar

[106] Xu XD, Doesburg EBM, Scholten JJF. Catal Today, 1987, 2: 125-170 CrossRef Google Scholar

[107] Zaman S, Smith KJ. Catal Rev, 2012, 54: 41-132 CrossRef Google Scholar

[108] Su J, Mao W, Xu XC, Yang Z, Li H, Xu J, Han YF. AIChE J, 2014, 60: 1797-1809 CrossRef Google Scholar

[109] Anton J, Nebel J, Göbel C, Gabrysch T, Song H, Froese C, Ruland H, Muhler M, Kaluza S. Top Catal, 2016, 59: 1361-1370 CrossRef Google Scholar

[110] Liu GL, Niu T, Cao A, Geng YX, Zhang Y, Liu Y. Fuel, 2016, 176: 1-10 CrossRef Google Scholar

[111] Niu T, Liu GL, Chen Y, Yang J, Wu J, Cao Y, Liu Y. Appl Surface Sci, 2016, 364: 388-399 CrossRef ADS Google Scholar

[112] Zhang R, Liu F, Wang B. Catal Sci Technol, 2016, 6: 8036-8054 CrossRef Google Scholar

[113] Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J. Chem Soc Rev, 2017, doi: 10.1039/C6CS00324A, CrossRef PubMed Google Scholar

[114] Wang Z, Spivey JJ. Appl Catal A-Gen, 2015, 507: 75-81 CrossRef Google Scholar

[115] Prieto G, Beijer S, Smith ML, He M, Au Y, Wang Z, Bruce DA, de Jong KP, Spivey JJ, de Jongh PE. Angew Chem Int Ed, 2014, 53: 6397-6401 CrossRef PubMed Google Scholar

[116] Volkova GG, Yurieva TM, Plyasova LM, Naumova MI, Zaikovskii VI. J Mol Catal A-Chem, 2000, 158: 389-393 CrossRef Google Scholar

[117] Xu HY, Chu W, Shi LM, Mang H, Zhou J. Acta Physico-Chimica Sinica, 2008, 24: 1085–1089. Google Scholar

[118] Tien-Thao N, Alamdari H, Zahedi-Niaki MH, Kaliaguine S. Appl Catal A-Gen, 2006, 311: 204-212 CrossRef Google Scholar

[119] Tien-Thao N, Alamdari H, Kaliaguine S. J Solid State Chem, 2008, 181: 2006-2019 CrossRef ADS Google Scholar

[120] Gao W, Zhao Y, Chen H, Chen H, Li Y, He S, Zhang Y, Wei M, Evans DG, Duan X. Green Chem, 2015, 17: 1525-1534 CrossRef Google Scholar

[121] Yang Y, Qi X, Wang X, Lv D, Yu F, Zhong L, Wang H, Sun Y. Catal Today, 2016, 270: 101-107 CrossRef Google Scholar

[122] Su J, Zhang Z, Fu D, Liu D, Xu XC, Shi B, Wang X, Si R, Jiang Z, Xu J, Han YF. J Catal, 2016, 336: 94-106 CrossRef Google Scholar

[123] Xiang Y, Chitry V, Kruse N. Catal Lett, 2013, 143: 936-941 CrossRef Google Scholar

[124] Xiang Y, Barbosa R, Kruse N. ACS Catal, 2014, 4: 2792-2800 CrossRef Google Scholar

[125] Xiang Y, Chitry V, Liddicoat P, Felfer P, Cairney J, Ringer S, Kruse N. J Am Chem Soc, 2013, 135: 7114-7117 CrossRef PubMed Google Scholar

[126] Xiang Y, Barbosa R, Li X, Kruse N. ACS Catal, 2015, 5: 2929-2934 CrossRef Google Scholar

[127] Dong X, Liang XL, Li HY, Lin GD, Zhang P, Zhang HB. Catal Today, 2009, 147: 158-165 CrossRef Google Scholar

[128] Ning X, An Z, He J. J Catal, 2016, 340: 236-247 CrossRef Google Scholar

[129] Werner S, Johnson GR, Bell AT. ChemCatChem, 2014, 6: 2881-2888 CrossRef Google Scholar

[130] Du H, Zhu H, Liu T, Zhao Z, Chen X, Dong W, Lu W, Luo W, Ding Y. Catal Today, 2017, 281: 549-558 CrossRef Google Scholar

[131] Du H, Zhu H, Zhao Z, Dong W, Luo W, Lu W, Jiang M, Liu T, Ding Y. Appl Catal A-Gen, 2016, 523: 263-271 CrossRef Google Scholar

[132] Gnanamani MK, Jacobs G, Graham UM, Ribeiro MC, Noronha FB, Shafer WD, Davis BH. Catal Today, 2016, 261: 40-47 CrossRef Google Scholar

[133] Pei Y, Ding Y, Zang J, Song X, Dong W, Zhu H, Wang T, Chen W. Chin J Catal, 2015, 36: 252-259 CrossRef Google Scholar

[134] Dong WD, Zhu HJ, Ding YJ, Pei YP, Du H, Wang T. Acta Phys-Chimi Sin, 2014, 30: 1745–1751. Google Scholar

[135] Pei YP, Liu JX, Zhao YH, Ding YJ, Liu T, Dong WD, Zhu HJ, Su HY, Yan L, Li JL, Li WX. ACS Catal, 2015, 5: 3620-3624 CrossRef Google Scholar

[136] de Aquino AD, Gomez Cobo AJ. Catal Today, 2001, 65: 209-216 CrossRef Google Scholar

[137] Du H, Zhu H, Chen X, Dong W, Lu W, Luo W, Jiang M, Liu T, Ding Y. Fuel, 2016, 182: 42-49 CrossRef Google Scholar

[138] Bordoloi A, Anton J, Ruland H, Muhler M, Kaluza S. Catal Sci Technol, 2015, 5: 3603-3612 CrossRef Google Scholar

[139] Shen GC, Liu AM, Shido T, Ichikawa M. Top Catal, 1995, 2: 141-154 CrossRef Google Scholar

[140] Jiao G, Ding Y, Zhu H, Li X, Dong W, Li J, LÜ Y. Chin J Catal, 2009, 30: 92-94 CrossRef Google Scholar

[141] Mahdavi V, Peyrovi MH, Islami M, Mehr JY. Appl Catal A-Gen, 2005, 281: 259-265 CrossRef Google Scholar

[142] Anton J, Nebel J, Song H, Froese C, Weide P, Ruland H, Muhler M, Kaluza S. J Catal, 2016, 335: 175-186 CrossRef Google Scholar

[143] Wang Z, Kumar N, Spivey JJ. J Catal, 2016, 339: 1-8 CrossRef Google Scholar

[144] Subramanian ND, Balaji G, Kumar CSSR, Spivey JJ. Catal Today, 2009, 147: 100-106 CrossRef Google Scholar

[145] Xiang Y, Kruse N. Nat Commun, 2016, 7: 13058 CrossRef PubMed ADS Google Scholar

[146] Xiao K, Bao Z, Qi X, Wang X, Zhong L, Lin M, Fang K, Sun Y. Catal Commun, 2013, 40: 154-157 CrossRef Google Scholar

[147] Xiao K, Bao Z, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y. J Mol Catal A-Chem, 2013, 378: 319-325 CrossRef Google Scholar

[148] Yang Y, Wang L, Xiao K, Zhao T, Wang H, Zhong L, Sun Y. Catal Sci Technol, 2015, 5: 4224-4232 CrossRef Google Scholar

[149] Xu R, Yang C, Wei W, Li W, Sun Y, Hu T. J Mol Catal A-Chem, 2004, 221: 51-58 CrossRef Google Scholar

[150] Hou B, Han X, Lin M, Fang K. J Fuel Chem Tech, 2016, 44: 217-224 CrossRef Google Scholar

[151] Lu Y, Yu F, Hu J, Liu J. Appl Catal A-Gen, 2012, 429-430: 48-58 CrossRef Google Scholar

[152] Ding M, Qiu M, Liu J, Li Y, Wang T, Ma L, Wu C. Fuel, 2013, 109: 21-27 CrossRef Google Scholar

[153] Han X, Fang K, Sun Y. RSC Adv, 2015, 5: 51868-51874 CrossRef Google Scholar

[154] Ding M, Tu J, Qiu M, Wang T, Ma L, Li Y. Appl Energ, 2015, 138: 584-589 CrossRef Google Scholar

[155] Lu Y, Cao B, Yu F, Liu J, Bao Z, Gao J. ChemCatChem, 2014, 6: 473-478 CrossRef Google Scholar

[156] Guo H, Zhang H, Peng F, Yang H, Xiong L, Wang C, Huang C, Chen X, Ma L. Appl Catal A-Gen, 2015, 503: 51-61 CrossRef Google Scholar

[157] Guo H, Zhang H, Peng F, Yang H, Xiong L, Huang C, Wang C, Chen X, Ma L. Appl Clay Sci, 2015, 111: 83-89 CrossRef Google Scholar

  • Figure 1

    Different reaction paths for the production of lower olefins via syngas conversion [26] (color online).

  • Scheme 1

    CO insertion mechanism over modified FT catalysts [106].

  • Figure 2

    OX-ZEO bifunctional catalyst for direct production of olefins via syngas [42] (color online).

  • Scheme 2

    Schematic depiction of the Cu-M dual sites for high alcohol synthesis [105] (color online).

  • Figure 3

    Catalytic performance of ZnCrOx/MSAPO catalyst for lower olefins production. (a) CO conversion and product distribution versus H2/CO ratios; (b) compare the hydrocarbon distribution among OX-ZEO, FTO and FTS that predicted by the ASF model at a chain growth probability of 0.46; (c) the stability test of ZnCrOx/MSAPO catalyst [43] (color online).

  • Scheme 3

    Schematic depiction of structural evolution of CuFe dual site through the whole reaction: from close contact at the early stage of reaction to phase separation after reaction [147] (color online).

  • Figure 4

    Comparative study of the differences in product selectivity over different catalyst systems for the conversion of methanol under H2. Reaction conditions: 400 °C, 10 bar, 3600 mL g−1 h−1 of GSHV, 0.010 mL min−1; time-on-stream (TOS)=200 min [44] (color online).

  • Scheme 4

    Schematic illustration of the active site and reaction network over a CuFe catalyst during high alcohol synthesis [148] (color online).

  • Scheme 5

    Schematic depiction of the promoting effects of Mn, Zr and Ce on CuFe catalyst [153] (color online).

  • Figure 5

    Reaction coupling of methanol-synthesis and methanol to olefins for direct production of lower olefins via syngas [44] (color online).

  • Figure 6

    The carbide mechanism for Fischer-Tropsch synthesis [51].

  • Figure 7

    The typical product distribution based on Anderson-Schulz-Flory (ASF) model [26] (color online).

  • Figure 8

    Schematic depiction of the preparation methods for iron supported on ordered mesoporous materials as efficient Fe-based FTO catalysts [68] (color online).

  • Figure 9

    Size and promoter effect on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts [69] (color online).

  • Figure 10

    (a) Structural model for the Mn/Fe3O4 catalyst; (b) scanning electron microscope (SEM) images of the Fe3O4 microspheres; (c) transmission electron microscope (TEM) images of the reduced 6 wt% Mn/Fe3O4 catalyst; (d) original scanning transmission electron microscopy (STEM) image of the 6 wt% Mn/Fe3O4 catalyst as prepared; (e) the corresponding STEM-energy dispersive X-ray spectroscopy (EDX) elemental mapping of Fe, O and Mn on the catalyst [76] (color online).

  • Figure 11

    TEM and high resolution TEM (HRTEM) characterization of activated catalysts with iron loading of 10 wt%. (a, b) Fe/NCNTs; (c) Fe/t-CNTs; (d) Fe/u-CNTs. The insets in (a) and (c) are the corresponding particle size distributions [86] (color online).

  • Figure 12

    (a) XRD patterns of the calcined catalysts; (b) the comparison of activity vs. TOS between Fe-Zn-0.81Na and Fe-1.2Na catalysts; (c) the activity and product distribution over Fe-Zn-0.81Na, Fe-Zn, and Fe catalysts (reaction conditions: 340 °C, 20 bar, syngas (CO:H2:CO2:Ar=24:64:8:4), 60000 mL g−1 h−1); (d) the hydrocarbon distribution and Anderson-Schulz-Flory (ASF) plot over Fe-Zn-0.81Na; (e) catalytic activity and the o/p ratio as a function of Na content [88] (color online).

  • Figure 13

    TEM characterization of the CoMn catalysts at the steady stage of reaction. (a, b) Low-resolution TEM images; (c, e) high-resolution images of Co2C nanoprisms with exposed facets of (101), (−101) and (020); (d) distance (length) of the lattice fringes; (f) the Co2C nanoprisms model with four rectangular faces and two rhomboid faces [95] (color online).

  • Figure 14

    The stability test of CoMn. Reaction conditions: 250 °C, 3 bar, 6000 mL g−1 h−1 and H2/CO of 1 [95] (color online).

  • Figure 15

    3D tomographic reconstructions of atom probe microscopy results for a CoCuMn core-shell nanoparticle. (a) Atom map result of CoCuMn catalyst nanoparticles; (b, c) an enlarged view from a 5 nm thick slice of the particles at the core-shell interface and intracore; (d) a 3D model of the core-shell nanoparticles [125] (color online).

  • Figure 16

    Ternary cobalt-copper-niobium catalysts for the selective CO hydrogenation to higher alcohols [126] (color online).

  • Figure 17

    Influence of precursor activation on structure and HAS performance for CuCo catalyst [124] (color online).

  • Figure 18

    Schematic depiction of the formation of high alcohols via syngas conversion at cobalt metal/carbide interface [135] (color online).

  • Figure 19

    Structural characterization of Co4Mn1K0.1 catalysts. (a) HRTEM image of Co4Mn1K0.1 catalyst before reaction; (b) enlarged HRTEM image (inset: the Fourier transform of the selected region of (a)); (c) XRD patterns of Co4Mn1K0.1 catalyst: both before and after CO hydrogenation; (d–f) HAADF-STEM images of Co4Mn1K0.1 catalyst after CO hydrogenation [145] (color online).

  • Figure 20

    The catalytic performance of Zn promoted FeCu-based catalyst with TOS. Reaction conditions: T=260 °C; P=60 bar; H2/CO=2.0; GHSV=6000 h−1 [99] (color online).

  • Table 1   The catalytic performance of different Iron catalysts

    Sample

    FTY b) (10−6 molCO−1 gFe. s−1)

    Selectivity (C%)

    CH4

    C24 olefins

    C24 Paraffins

    C5+

    Fe/CNF

    1.41

    23

    61

    4

    12

    Fe/α-Al2O3 (12 wt% Fe)

    0.65

    22

    61

    4

    13

    Fe/β-SiC

    6.52

    31

    58

    4

    7

    Fe/SiO2

    0.14

    38

    56

    5

    1

    Fe/γ-Al2O3

    0.07

    54

    44

    2

    0

    Fe-Ti-Zn-K

    0.13

    83

    16

    1

    0

    Fe-Cu-K-SiO2

    0.20

    43

    46

    2

    9

    Bulk Fe

    0.08

    76

    21

    2

    1

    Reaction conditions: 350 °C, 1 bar, H2/CO of 1, 20 mg of catalyst [65]; b) Iron time yield (FTY) represents moles of CO converted to hydrocarbons per gram of Fe per second.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1