logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 841-852(2017) https://doi.org/10.1007/s11426-016-0473-5

Ruthenium-promoted reductive transformation of CO2

More info
  • ReceivedNov 15, 2016
  • AcceptedDec 12, 2016
  • PublishedMar 20, 2017

Abstract

The reductive transformation of CO2 to energy related products including formic acid, CO, formamide, methanol and methylamine could be a promising option to supply renewable energy. In this aspect, ruthenium has found wide application in hydrogenation of various carbonyl groups, and has successfully been applied to reductive transformation of CO2 with high catalytic efficiency and excellent selectivity. In addition, ruthenium complexes have also served as effective photosensitizers for CO2 photoreduction. Classified by reductive products, this review summarizes and updates advances in the Ru-catalyzed reduction of CO2 along with catalyst development on the basis of mechanistic understanding at a molecular level.


Funded by

National Key Research and Development Program(2016YFA0602900)

the National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality(16JCZDJC39900)

Specialized Research Fund for the Doctoral Program of Higher Education(20130031110013)

MOE Innovation Team(IRT13022)


Acknowledgment

This work was supported by the National Key Research and Development Program (2016YFA0602900), the National Natural Science Foundation of China (21472103, 21672119), the Natural Science Foundation of Tianjin Municipality (16JCZDJC39900), Specialized Research Fund for the Doctoral Program of Higher Education (20130031110013), MOE Innovation Team (IRT13022) of China.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W, Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR, Aresta M, Dibenedetto A, Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL, Aresta M, Dibenedetto A, Angelini A, Harriman A, He LN, Otto A, Grube T, Schiebahn S, Stolten D. Chem Rev, 2001, 101: 953-996 CrossRef Google Scholar

[2] Rayner CM. Org Process Res Dev, 2007, 11: 121-132 CrossRef Google Scholar

[3] Leitner W, Xiao J, Nefkens SCA, Jessop PG, Ikariya T, Noyori R, Thompson RL, Gläser R, Bush D, Liotta CL, Eckert CA. Acc Chem Res, 2002, 35: 746-756 CrossRef Google Scholar

[4] Yang ZZ, He LN, Gao J, Liu AH, Yu B, Dell’Amico DB, Calderazzo F, Labella L, Marchetti F, Pampaloni G, Song QW, Zhao YN, He LN, Gao J, Yang ZZ, He LN, Wang JQ, Wang JL, Braunstein P, Matt D, Nobel D. Energy Environ Sci, 2012, 5: 6602-6639 CrossRef Google Scholar

[5] Jessop PG, Joó F, Tai CC, Centi G, Quadrelli EA, Perathoner S, Klankermayer J, Leitner W, Federsel C, Jackstell R, Beller M, Klankermayer J, Wesselbaum S, Beydoun K, Leitner W, Grasemann M, Laurenczy G, Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Coordin Chem Rev, 2004, 248: 2425-2442 CrossRef Google Scholar

[6] Li YN, Ma R, He LN, Diao ZF, Li YN, He LN. Catal Sci Technol, 2014, 4: 1498-1512 CrossRef Google Scholar

[7] McAlees AJ, McCrindle R. J Chem Soc C, 1969, : 2425-2435 CrossRef Google Scholar

[8] Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R, Ohkuma T, Ooka H, Ikariya T, Noyori R. J Am Chem Soc, 1995, 117: 7562-7563 CrossRef Google Scholar

[9] Hao C, Wang S, Li M, Kang L, Ma X. Catal Today, 2011, 160: 184-190 CrossRef Google Scholar

[10] Kuriki R, Sekizawa K, Ishitani O, Maeda K. Angew Chem Int Ed, 2015, 54: 2406-2409 CrossRef PubMed Google Scholar

[11] Leitner W. Angew Chem Int Ed, 1995, 34: 2207-2221 CrossRef Google Scholar

[12] Bi QY, Lin JD, Liu YM, Du XL, Wang JQ, He HY, Cao Y. Angew Chem Int Ed, 2014, 53: 13583-13587 CrossRef PubMed Google Scholar

[13] Graf E, Leitner W, Leitner W, Dinjus E, Gaßner F. J Chem Soc Chem Commun, 1992, : 623-624 Google Scholar

[14] Jessop PG, Ikariya T, Noyori R. Chem Rev, 1995, 95: 259-272 CrossRef Google Scholar

[15] Khan MMT, Halligudi SB, Shukla S. J Mol Catal, 1989, 53: 305-313 CrossRef Google Scholar

[16] Inoue Y, Izumida H, Sasaki Y, Hashimoto H. Chem Lett, 1976: 863–864. Google Scholar

[17] Jessop PG, Ikariya T, Noyori R. Nature, 1994, 368: 231-233 CrossRef ADS Google Scholar

[18] Munshi P, Main AD, Linehan JC, Tai CC, Jessop PG. J Am Chem Soc, 2002, 124: 7963-7971 CrossRef Google Scholar

[19] Elek J, Nádasdi L, Papp G, Laurenczy G, Joó F. Appl Catal A-Gen, 2003, 255: 59-67 CrossRef Google Scholar

[20] Joó F, Laurenczy G, Karády P, Elek J, Nádasdi L, Roulet R. Appl Organometal Chem, 2000, 14: 857-859 CrossRef Google Scholar

[21] Laurenczy G, Joó F, Nádasdi L, Horváth H, Laurenczy G, Kathó Á, Laurenczy G, Jedner S, Alessio E, Dyson PJ. Inorg Chem, 2000, 39: 5083-5088 CrossRef Google Scholar

[22] Federsel C, Jackstell R, Boddien A, Laurenczy G, Beller M. ChemSusChem, 2010, 3: 1048-1050 CrossRef PubMed Google Scholar

[23] Ng CK, Wu J, Hor TSA, Luo HK. Chem Commun, 2016, 52: 11842-11845 CrossRef PubMed Google Scholar

[24] Filonenko GA, van Putten R, Schulpen EN, Hensen EJM, Pidko EA, Filonenko GA, Conley MP, Copéret C, Lutz M, Hensen EJM, Pidko EA. ChemCatChem, 2014, 6: 1526-1530 CrossRef Google Scholar

[25] Tanaka R, Yamashita M, Nozaki K. J Am Chem Soc, 2009, 131: 14168-14169 CrossRef PubMed Google Scholar

[26] Rohmann K, Kothe J, Haenel MW, Englert U, Hölscher M, Leitner W. Angew Chem Int Ed, 2016, 55: 8966-8969 CrossRef PubMed Google Scholar

[27] Kothandaraman J, Goeppert A, Czaun M, Olah GA, Surya Prakash GK. Green Chem, 2016, 18: 5831-5838 CrossRef Google Scholar

[28] Li YN, He LN, Lang XD, Liu XF, Zhang S. RSC Adv, 2014, 4: 49995-50002 CrossRef Google Scholar

[29] Motterlini R, Otterbein LE, Wu L, Fang X, Liu Q, Jackstell R, Beller M, Wu XF, Wu XF, Neumann H, Beller M. Nat Rev Drug Discov, 2010, 9: 728-743 CrossRef PubMed Google Scholar

[30] Tanaka K, Morimoto M, Tanaka T. Chem Lett, 1983, 12: 901-904 CrossRef Google Scholar

[31] Tanaka K. Chem Record, 2009, 9: 169-186 CrossRef PubMed Google Scholar

[32] Ishida H, Tanaka K, Tanaka T, Nagao H, Mizukawa T, Tanaka K. Organometallics, 1987, 6: 181-186 CrossRef Google Scholar

[33] Chardon-Noblat S, Deronzier A, Ziessel R, Zsoldos D. J Electroanal Chem, 1998, 444: 253-260 CrossRef Google Scholar

[34] Johnson BA, Maji S, Agarwala H, White TA, Mijangos E, Ott S, Johnson BA, Agarwala H, White TA, Mijangos E, Maji S, Ott S. Angew Chem Int Ed, 2016, 55: 1825-1829 CrossRef PubMed Google Scholar

[35] Hawecker J, Lehn JM, Ziessel R. J Chem Soc Chem Commun, 1983, : 536-538 CrossRef Google Scholar

[36] Ishida H, Tanaka K, Tanaka T. Chem Lett, 1988, 2: 339–342. Google Scholar

[37] Kuramochi Y, Fukaya K, Yoshida M, Ishida H. Chem Eur J, 2015, 21: 10049-10060 CrossRef PubMed Google Scholar

[38] Kimura E, Bu X, Shionoya M, Wada S, Maruyama S. Inorg Chem, 1992, 31: 4542-4546 CrossRef Google Scholar

[39] Méndez MA, Voyame P, Girault HH. Angew Chem Int Ed, 2011, 50: 7391-7394 CrossRef PubMed Google Scholar

[40] Matlachowski C, Schwalbe M. Dalton Trans, 2015, 44: 6480-6489 CrossRef PubMed Google Scholar

[41] Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O. Inorg Chem, 2005, 44: 2326-2336 CrossRef PubMed Google Scholar

[42] Bian ZY, Sumi K, Furue M, Sato S, Koike K, Ishitani O. Inorg Chem, 2008, 47: 10801-10803 CrossRef PubMed Google Scholar

[43] Kato E, Takeda H, Koike K, Ohkubo K, Ishitani O, Nakada A, Koike K, Maeda K, Ishitani O. Chem Sci, 2015, 6: 3003-3012 CrossRef Google Scholar

[44] Khenkin AM, Efremenko I, Weiner L, Martin JML, Neumann R. Chem Eur J, 2010, 16: 1356-1364 CrossRef PubMed Google Scholar

[45] Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA, Woolerton TW, Sheard S, Pierce E, Ragsdale SW, Armstrong FA. J Am Chem Soc, 2010, 132: 2132-2133 CrossRef PubMed Google Scholar

[46] Gerack CJ, McElwee-White L. Molecules, 2014, 19: 7689-7713 CrossRef PubMed Google Scholar

[47] Haynes P, Slaugh LH, Kohnle JF. Tetrahedron Lett, 1970, 11: 365-368 CrossRef Google Scholar

[48] Jessop PG, Hsiao Y, Ikariya T, Noyori R, Jessop PG, Hsiao Y, Ikariya T, Noyori R. J Am Chem Soc, 1994, 116: 8851-8852 CrossRef Google Scholar

[49] Kröcher O, Köppel RA, Baiker A. Chem Commun, 1997, : 453-454 CrossRef Google Scholar

[50] Liu F, Abrams MB, Baker RT, Tumas W. Chem Commun, 2001, : 433-434 CrossRef Google Scholar

[51] Kröcher O, Köppel RA, Fröba M, Baiker A, Kröcher O, Köppel RA, Baiker A, Kröcher O, Köppel RA, Baiker A. J Catal, 1998, 178: 284-298 CrossRef Google Scholar

[52] Kayaki Y, Shimokawatoko Y, Ikariya T. Adv Synth Catal, 2003, 345: 175-179 CrossRef Google Scholar

[53] Schmid L, Canonica A, Baiker A. Appl Catal A-Gen, 2003, 255: 23-33 CrossRef Google Scholar

[54] Munshi P, Heldebrant DJ, McKoon EP, Kelly PA, Tai CC, Jessop PG. Tetrahedron Lett, 2003, 44: 2725-2727 CrossRef Google Scholar

[55] Rohr M, Grunwaldt JD, Baiker A. J Mol Catal A-Chem, 2005, 226: 253-257 CrossRef Google Scholar

[56] Zhang L, Han Z, Zhao X, Wang Z, Ding K. Angew Chem Int Ed, 2015, 54: 6186-6189 CrossRef PubMed Google Scholar

[57] Ishida H, Tanaka H, Tanaka K, Tanaka T. Chem Lett, 1987, 16: 597-600 CrossRef Google Scholar

[58] Kobayashi K, Kikuchi T, Kitagawa S, Tanaka K. Angew Chem Int Ed, 2014, 53: 11813-11817 CrossRef PubMed Google Scholar

[59] Tominaga K, Sasaki Y, Kawai M, Watanabe T, Saito M. J Chem Soc Chem Commun, 1993, : 629-631 CrossRef Google Scholar

[60] Wesselbaum S, Vom Stein T, Klankermayer J, Leitner W. Angew Chem Int Ed, 2012, 51: 7499-7502 CrossRef PubMed Google Scholar

[61] Wesselbaum S, Moha V, Meuresch M, Brosinski S, Thenert KM, Kothe J, Stein T, Englert U, Hölscher M, Klankermayer J, Leitner W. Chem Sci, 2015, 6: 693-704 CrossRef Google Scholar

[62] Du XL, Jiang Z, Su DS, Wang JQ. ChemSusChem, 2016, 9: 322-332 CrossRef PubMed Google Scholar

[63] Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D. Nat Chem, 2011, 3: 609-614 CrossRef PubMed ADS Google Scholar

[64] Balaraman E, Ben-David Y, Milstein D. Angew Chem Int Ed, 2011, 50: 11702-11705 CrossRef PubMed Google Scholar

[65] Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K. Angew Chem Int Ed, 2012, 51: 13041-13045 CrossRef PubMed Google Scholar

[66] Kim SH, Hong SH. ACS Catal, 2014, 4: 3630-3636 CrossRef Google Scholar

[67] Khusnutdinova JR, Garg JA, Milstein D. ACS Catal, 2015, 5: 2416-2422 CrossRef Google Scholar

[68] Huff CA, Sanford MS. J Am Chem Soc, 2011, 133: 18122-18125 CrossRef PubMed Google Scholar

[69] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G, Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Nature, 2012, 485: 201-206 CrossRef PubMed ADS Google Scholar

[70] Tundo P, Selva M. Acc Chem Res, 2002, 35: 706-716 CrossRef Google Scholar

[71] Jacquet O, Frogneux X, Das Neves Gomes C, Cantat T, Santoro O, Lazreg F, Minenkov Y, Cavallo L, Cazin CSJ. Chem Sci, 2013, 4: 2127-2131 CrossRef Google Scholar

[72] Blondiaux E, Pouessel J, Cantat T, Das S, Bobbink FD, Laurenczy G, Dyson PJ, Yang Z, Yu B, Zhang H, Zhao Y, Ji G, Ma Z, Gao X, Liu Z, Chen WC, Shen JS, Jurca T, Peng CJ, Lin YH, Wang YP, Shih WC, Yap GPA, Ong TG. Angew Chem Int Ed, 2014, 53: 12186-12190 CrossRef PubMed Google Scholar

[73] Li Y, Fang X, Junge K, Beller M. Angew Chem Int Ed, 2013, 52: 9568-9571 CrossRef PubMed Google Scholar

[74] Li Y, Sorribes I, Yan T, Junge K, Beller M. Angew Chem Int Ed, 2013, 52: 12156-12160 CrossRef PubMed Google Scholar

[75] Beydoun K, vom Stein T, Klankermayer J, Leitner W. Angew Chem Int Ed, 2013, 52: 9554-9557 CrossRef PubMed Google Scholar

[76] Beydoun K, Ghattas G, Thenert K, Klankermayer J, Leitner W. Angew Chem Int Ed, 2014, 53: 11010-11014 CrossRef PubMed Google Scholar

[77] Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J. Energy Environ Sci, 2013, 6: 3112-3135 CrossRef Google Scholar

[78] Lunde P. J Catal, 1973, 30: 423-429 CrossRef Google Scholar

[79] Xu J, Su X, Duan H, Hou B, Lin Q, Liu X, Pan X, Pei G, Geng H, Huang Y, Zhang T. J Catal, 2016, 333: 227-237 CrossRef Google Scholar

[80] Melo CI, Szczepańska A, Bogel-Łukasik E, Nunes da Ponte M, Branco LC. ChemSusChem, 2016, 9: 1081-1084 CrossRef PubMed Google Scholar

[81] Bontemps S, Vendier L, Sabo-Etienne S. J Am Chem Soc, 2014, 136: 4419-4425 CrossRef PubMed Google Scholar

[82] Qian Q, Cui M, He Z, Wu C, Zhu Q, Zhang Z, Ma J, Yang G, Zhang J, Han B. Chem Sci, 2015, 6: 5685-5689 CrossRef Google Scholar

[83] Qian Q, Zhang J, Cui M, Han B. Nat Commun, 2016, 7: 11481-11487 CrossRef PubMed ADS Google Scholar

[84] Thenert K, Beydoun K, Wiesenthal J, Leitner W, Klankermayer J. Angew Chem Int Ed, 2016, 55: 12266-12269 CrossRef PubMed Google Scholar

[85] Mizukawa T, Tsuge K, Nakajima H, Tanaka K, Tanaka K, Mizukawa T. Angew Chem Int Ed, 1999, 38: 362-363 CrossRef Google Scholar

[86] Nagao H, Mizukawa T, Tanaka K. J Bio Chem, 1985, 260: 3440–3450. Google Scholar

[87] Willner I, Mandler D, Riklin A. J Chem Soc Chem Commun, 1986, 13: 1022–1024. Google Scholar

[88] Nakajima H, Kushi Y, Nagao H, Tanaka K. Organometallics, 1995, 14: 5093-5098 CrossRef Google Scholar

[89] Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR. ChemSusChem, 2014, 7: 1386-1397 CrossRef PubMed Google Scholar

[90] Zhang L, Han Z, Zhang L, Li M, Ding K. Chin J Org Chem, 2016, 36: 1824-1838 CrossRef Google Scholar

[91] Cui C, Wang H, Zhu X, Han J, Ge Q, Sun X, Cao X, Hu P. Sci China Chem, 2015, 58: 607-613 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1