logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 942-949(2017) https://doi.org/10.1007/s11426-016-0480-y

Liquid-phase oxidation of ethylamine to acetaldehyde oximes over tungsten-doped zeolites

More info
  • ReceivedNov 18, 2016
  • AcceptedJan 5, 2017
  • PublishedMay 2, 2017

Abstract

The liquid-phase oxidation of ethylamine with hydrogen peroxide was studied over tungsten-doped zeolites to develop a clean and simple route for producing acetaldehyde oxime. The investigations were firstly performed over W/MOR, where the coordinated state as well as the acidity of the W species were characterized. The reaction parameters, including H2O2 amount, solvent, temperature, tungsten content as well as catalyst amount, governed the activity and oxime selectivity. Under optimized reaction conditions, W/MOR showed an ethylamine conversion and corresponding oxime selectivity of 18.3% and 88.9%. W/MOR showed a superior performance in comparison to other tungsten-containing zeolites of W/Beta, W/MWW and W/Y. Although W/MOR exhibited lower amine conversion than titanosilicates of TS-1 and Ti-MWW, it gave higher selectivity to the main product of oxime. Moreover, W/MOR proved to be a robust catalyst, exhibiting a stable catalytic performance after being reused at least for 5 times.


Funded by

National Natural Science Foundation of China(21533002,21373089,21603075)

Ministry of Science and Technology of China(2016YFA0202804)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21533002, 21373089, 21603075), and the National Key Research and Development Program of China (2016YFA0202804).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Thomas JM, Raja R. Proc Natl Acad Sci USA, 2005, 102: 13732-13736 CrossRef PubMed ADS Google Scholar

[2] Cappabianca CJ, Pelosi PF, Nulty JH. Experience with a novel, volatile boiler water oxygen scavenger. In: The International Water Conference 46th Annual Meeting. Pittsburgh, PA, 1985. 558–565. Google Scholar

[3] Song F, Liu Y, Wang L, Zhang H, He M, Wu P. Appl Catal A-Gen, 2007, 327: 22-31 CrossRef Google Scholar

[4] Thangaraj A, Kumar R, Mirajkar SP, Ratnasamy P. J Catal, 1991, 130: 1-8 CrossRef Google Scholar

[5] Thangaraj A, Kumar R, Ratnasamy P. J Catal, 1991, 131: 294-297 CrossRef Google Scholar

[6] Thangaraj A, Sivasanker S, Ratnasamy P. J Catal, 1991, 131: 394-400 CrossRef Google Scholar

[7] Le Bars J, Dakka J, Sheldon RA. Appl Catal A-Gen, 1996, 136: 69-80 CrossRef Google Scholar

[8] Tatsumi T, Jappar N. J Catal, 1996, 161: 570-576 CrossRef Google Scholar

[9] Dal Pozzo L, Fornasari G, Monti T. Catal Commun, 2002, 3: 369-375 CrossRef Google Scholar

[10] Ding J, Xu L, Yu Y, Wu H, Huang S, Yang Y, Wu J, Wu P. Catal Sci Technol, 2013, 3: 2587-2595 CrossRef Google Scholar

[11] Wu P, Tatsumi T, Komatsu T, Yashima T. J Phys Chem B, 2001, 105, 2897-2905. Google Scholar

[12] Zhao S, Xie W, Yang J, Liu Y, Zhang Y, Xu B, Jiang J, He M, Wu P. Appl Catal A-Gen, 2011, 394: 1-8 CrossRef Google Scholar

[13] Song F, Liu YM, Wang LL, Zhang HJ, He MY, Wu P. Stud Surf Sci Catal, 2007, 170: 1236–1243. Google Scholar

[14] Wu P, Komatsu T, Yashima T. J Phys Chem, 1996, 100: 10316-10322 CrossRef Google Scholar

[15] Ding J, Wu P. Appl Catal A-Gen, 2014, 488: 86-95 CrossRef Google Scholar

[16] Xu H, Zhang Y, Wu H, Liu Y, Li X, Jiang J, He M, Wu P. J Catal, 2011, 281: 263-272 CrossRef Google Scholar

[17] Yang Y, Ding J, Wang B, Wu J, Zhao C, Gao G, Wu P. J Catal, 2014, 320: 160-169 CrossRef Google Scholar

[18] Gilbert KE, Borden WT. J Org Chem, 1979, 44: 659-661 CrossRef Google Scholar

[19] Kidwai M, Bhardwaj S. Synth Commun, 2011, 41: 2655-2662 CrossRef Google Scholar

[20] Reddy JS, Jacobs PA. J Chem Soc Perkin Trans, 1993: 2665–2666. Google Scholar

[21] Reddy JS, Sayari A. Appl Catal A-Gen, 1995, 128: 231-242 CrossRef Google Scholar

[22] Reddy JS, Sayari A. Catal Lett, 1994, 28: 263-267 CrossRef Google Scholar

[23] Sakaue S, Sakata Y, Nishiyama Y, Ishii Y. Chem Lett, 1992, 21: 289-292 CrossRef Google Scholar

[24] Crandall JK, Reix T. J Org Chem, 1992, 57: 6759-6764 CrossRef Google Scholar

[25] Buckard P, Fleury JP, Weiss F. Bull Soc Chim Fr, 1965: 2730. Google Scholar

[26] Zajac Jr WW, Darcy MG, Subong AP, Buzby JH. Tetrahedron Lett, 1989, 30: 6495-6496 CrossRef Google Scholar

[27] Yang XL, Dai WL, Chen H, Xu JH, Cao Y, Li H, Fan K. Appl Catal A-Gen, 2005, 283: 1-8 CrossRef Google Scholar

[28] Yang XL, Dai WL, Gao R, Chen H, Li H, Cao Y, Fan K. J Mol Catal A-Chem, 2005, 241: 205-214 CrossRef Google Scholar

[29] Yang X, Dai W, Gao R, Fan K. J Catal, 2007, 249: 278-288 CrossRef Google Scholar

[30] Yang X, Dai W, Chen H, Cao Y, Li H, He H, Fan K. J Catal, 2005, 229: 259-263 CrossRef Google Scholar

[31] Ke IS, Liu ST. Appl Catal A-Gen, 2007, 317: 91-96 CrossRef Google Scholar

[32] Wu Y, Emdadi L, Oh SC, Sakbodin M, Liu D. J Catal, 2015, 323: 100-111 CrossRef Google Scholar

[33] Anaya F, Zhang L, Tan Q, Resasco DE. J Catal, 2015, 328: 173-185 CrossRef Google Scholar

[34] Murzin DY, Kusema B, Murzina EV, Aho A, Tokarev A, Boymirzaev AS, Wärnå J, Dapsens PY, Mondelli C, Pérez-Ramírez J, Salmi T. J Catal, 2015, 330: 93-105 CrossRef Google Scholar

[35] Wu P, Tatsumi T, Komatsu T, Yashima T. J Catal, 2001, 202: 245-255 CrossRef Google Scholar

[36] Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent, 4,410,501, 1983. Google Scholar

[37] Ding JH, Xu L, Xu H, Wu HH, Liu YM, Wu P. Chin J Catal, 2013, 34: 243–250. Google Scholar

[38] Mal NK, Ramaswamy V, Ganapathy S, Ramaswamy AV. Appl Catal A-Gen, 1995, 125: 233-245 CrossRef Google Scholar

[39] Mal NK, Ramaswamy V, Rajamohanan PR, Ramaswamy AV. Microporous Mater, 1997, 12: 331-340 CrossRef Google Scholar

[40] Fang X, Wang Q, Zheng A, Liu Y, Wang Y, Deng X, Wu H, Deng F, He M, Wu P. Catal Sci Technol, 2012, 2: 2433-2435 CrossRef Google Scholar

  • Figure 1

    The XRD patterns of DeAl-MOR (a), W/MOR (Si/W=90) (b), W/MOR (Si/W=60) (c), W/MOR (Si/W=30) (d), W/MOR (Si/W=10) (e). The “♦” symbol indicates the crystalline phase of Na2WO4 (color online).

  • Scheme 1

    A summary for the reaction pathways (the green solid lines indicate the main reaction) (color online).

  • Figure 2

    N2 adsorption-desorption isotherms of DeAl-MOR (a) and W-MOR (Si/W=30) (b) (color online).

  • Figure 3

    UV-Vis spectra of W-MOR (Si/W=90) (a), W-MOR (Si/W=60) (b), W-MOR (Si/W=30) (c), and W-MOR (Si/W=10) (d) (color online).

  • Figure 4

    IR spectra of W-MOR (Si/W=90) (a), W-MOR (Si/W=60) (b), W-MOR (Si/W=30) (c), W-MOR (Si/W=10) (d) (color online).

  • Figure 5

    SEM (a) and TEM (b) images of W/MOR (Si/W=30).

  • Figure 6

    FT-IR spectra of pyridine adsorbed on DeAl-MOR (A) and W/MOR (Si/W=30) (B) after evacuation at 323 K (a), 373 K (b), 423 K (c), and 573 K (d) for 1 h, respectively (color online).

  • Figure 7

    Effect of H2O2 amount on EA oxidation with W/MOR (Si/W=30) as the catalyst. Reaction conditions: cat., 0.1 g; ethylamine, 20 mmol; H2O2 (30 wt%)/ethylamine=0.25–2.0; methanol, 5 g; temperature, 333 K (color online).

  • Figure 8

    Effect of solvent on EA oxidation with W/MOR (Si/W=30) as the catalyst. Reaction conditions: cat., 0.1 g; ethylamine, 20 mmol; H2O2 (30 wt%), 10 mmol; methanol, 5 g; temperature, 333 K (color online).

  • Figure 9

    Effect of reaction temperature on EA oxidation with W/MOR (Si/W=30) as the catalyst. Reaction conditions: cat., 0.1 g; ethylamine, 20 mmol; H2O2 (30 wt%), 10 mmol; methanol, 5 g (color online).

  • Figure 10

    Effect of Si/W ratio (a) and catalyst amount (b) on EA oxidation. Reaction conditions: cat., 0.025–0.2 g; ethylamine, 20 mmol; H2O2 (30 wt%), 10 mmol; methanol, 5 g; temperature, 333 K (color online).

  • Figure 11

    A comparison of W/MOR and titanosilicates in EA oxidation. Reaction conditions: cat., 0.1 g; ethylamine, 20 mmol; H2O2 (30 wt%), 10 mmol; methanol, 5 g; temperature, 333 K (color online).

  • Figure 12

    Recyclability of W/MOR for EA oxidation. Reaction conditions: cat., 0.1 g; ethylamine, 20 mmol; H2O2 (30 wt%), 10 mmol; methanol, 5 g; temperature, 333 K (color online).

  • Table 1   Selective oxidation of ethylamine over various W-containing zeolite

    Catalyst b)

    Structure

    Channel

    Si/Al ratio c)

    Si/W ratio c)

    Conversion (%)

    Selectivity (%)

    Yield (%)

    W/Beta

    *BEA

    3D, 12R

    1700

    31

    28.5

    85.5

    24.3

    W/Y1

    FAU

    3D, 12R

    6

    33

    9.6

    55.5

    5.3

    W/Y2

    FAU

    3D, 12R

    70

    28

    13.6

    81.7

    11.1

    W/MOR

    MOR

    2D, 12R×8R

    170

    31

    30.4

    88.0

    26.8

    W/MWW

    MWW

    2D, 10R (12R supercages)

    100 d)

    29

    17.8

    76.9

    13.7

    Reaction conditions: cat., 0.1 g; ethylamine, 20 mmol; H2O2 (30 wt%), 20 mmol; methanol, 5 g; temperature, 333 K. H2O2 was added dropwisely within one hour, and then the reaction was further performed for another 0.5 h. b) For all W-containing zeolites, the Si/W ratio was fixed at 30 in the impregnation process. c) Determined by ICP. d) Si/B ratio.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1