logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 950-957(2017) https://doi.org/10.1007/s11426-016-0489-3

Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts

More info
  • ReceivedNov 23, 2016
  • AcceptedJan 5, 2017
  • PublishedMay 9, 2017

Abstract

2,5-Furandicarboxylic (FDCA) is a potential substitute for petroleum-derived terephthalic acid, and aerobic oxidation of 5-hydroxymethylfurfural (HMF) provides an efficient route to synthesis of FDCA. On an activated carbon supported ruthenium (Ru/C) catalyst (with 5 wt% Ru loading), HMF was readily oxidized to FDCA in a high yield of 97.3% at 383 K and 1.0 MPa O2 in the presence of Mg(OH)2 as base additive. Ru/C was superior to Pt/C and Pd/C and also other supported Ru catalysts with similar sizes of metal nanoparticles (1–2 nm). The Ru/C catalysts were stable and recyclable, and their efficiency in the formation of FDCA increased with Ru loadings examined in the range of 0.5 wt%–5.0 wt%. Based on the kinetic studies including the effects of reaction time, reaction temperature, O2 pressure, on the oxidation of HMF to FDCA on Ru/C, it was confirmed that the oxidation of HMF to FDCA proceeds involving the primary oxidation of HMF to 2,5-diformylfuran (DFF) intermediate, and its sequential oxidation to 5-formyl-2-furancarboxylic acid (FFCA) and ultimately to FDCA, in which the oxidation of FFCA to FDCA is the rate-determining step and dictates the overall formation rate of FDCA. This study provides directions towards efficient synthesis of FDCA from HMF, for example, by designing novel catalysts more efficient for the involved oxidation step of FFCA to FDCA.


Funded by

National Natural Science Foundation of China(21373019,21433001,21690081)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21373019, 21433001, 21690081).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Chheda JN, Huber GW, Dumesic JA. Angew Chem Int Ed, 2007, 46: 7164-7183 CrossRef PubMed Google Scholar

[2] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411-2502 CrossRef PubMed Google Scholar

[3] Zhang X, Murria P, Jiang Y, Xiao W, Kenttämaa HI, Abu-Omar MM, Mosier NS. Green Chem, 2016, 18: 5219-5229 CrossRef Google Scholar

[4] Qi X, Watanabe M, Aida TM, Smith Jr RL. Green Chem, 2008, 10: 799-805 CrossRef Google Scholar

[5] Yang F, Liu Q, Yue M, Bai X, Du Y. Chem Commun, 2011, 47: 4469-4471 CrossRef PubMed Google Scholar

[6] Román-Leshkov Y, Chheda JN, Dumesic JA. Science, 2006, 312: 1933-1937 CrossRef PubMed ADS Google Scholar

[7] Amarasekara AS, Green D, Williams LTD. Eur Polymer J, 2009, 45: 595-598 CrossRef Google Scholar

[8] Gandini A, Silvestre AJD, Neto CP, Sousa AF, Gomes M. J Polym Sci A Polym Chem, 2009, 47: 295-298 CrossRef ADS Google Scholar

[9] Moreau C, Belgacem MN, Gandini A. Chem Inform, 2004, 35: 11–30. Google Scholar

[10] Partenheimer W, Grushin VV. Adv Synth Catal, 2001, 343: 102-111 CrossRef Google Scholar

[11] Sahu R, Dhepe PL. Reac Kinet Mech Cat, 2014, 112: 173-187 CrossRef Google Scholar

[12] Miao Z, Wu T, Li J, Yi T, Zhang Y, Yang X. RSC Adv, 2015, 5: 19823-19829 CrossRef Google Scholar

[13] Verdeguer P, Merat N, Gaset A. J Mol Catal, 1993, 85: 327-344 CrossRef Google Scholar

[14] Casanova O, Iborra S, Corma A. ChemSusChem, 2009, 2: 1138-1144 CrossRef PubMed Google Scholar

[15] Siyo B, Schneider M, Radnik J, Pohl MM, Langer P, Steinfeldt N. Appl Catal A-Gen, 2014, 478: 107-116 CrossRef Google Scholar

[16] Mei N, Liu B, Zheng J, Lv K, Tang D, Zhang Z. Catal Sci Technol, 2015, 5: 3194-3202 CrossRef Google Scholar

[17] Ait Rass H, Essayem N, Besson M. Green Chem, 2013, 15: 2240-2251 CrossRef Google Scholar

[18] Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ, Hutchings GJ, Cavani F. Green Chem, 2011, 13: 2091 CrossRef Google Scholar

[19] Gupta NK, Nishimura S, Takagaki A, Ebitani K. Green Chem, 2011, 13: 824-827 CrossRef Google Scholar

[20] Gorbanev YY, Kegnæs S, Riisager A. Catal Lett, 2011, 141: 1752-1760 CrossRef Google Scholar

[21] Artz J, Palkovits R. ChemSusChem, 2015, 8: 3832-3838 CrossRef PubMed Google Scholar

[22] Yi G, Teong SP, Zhang Y. Green Chem, 2016, 18: 979-983 CrossRef Google Scholar

[23] Nie J, Xie J, Liu H. J Catal, 2013, 301: 83-91 CrossRef Google Scholar

[24] Nie J, Xie J, Liu H. Chin J Catal, 2013, 34: 871-875 CrossRef Google Scholar

[25] Xie J, Nie J, Liu H. Chin J Catal, 2014, 35: 937-944 CrossRef Google Scholar

[26] Davis SE, Zope BN, Davis RJ. Green Chem, 2012, 14: 143-147 CrossRef Google Scholar

[27] Nie J, Liu H. Pure Appl Chem, 2011, 84: 765-777 CrossRef Google Scholar

[28] Pupovac K, Palkovits R. ChemSusChem, 2013, 6: 2103-2110 CrossRef PubMed Google Scholar

[29] Kerdi F, Ait Rass H, Pinel C, Besson M, Peru G, Leger B, Rio S, Monflier E, Ponchel A. Appl Catal A-Gen, 2015, 506: 206-219 CrossRef Google Scholar

[30] Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ. Catal Today, 2011, 160: 55-60 CrossRef Google Scholar

[31] Zope BN, Davis SE, Davis RJ. Top Catal, 2012, 55: 24-32 CrossRef Google Scholar

[32] Albonetti S, Lolli A, Morandi V, Migliori A, Lucarelli C, Cavani F. Appl Catal B-Environ, 2015, 163: 520-530 CrossRef Google Scholar

[33] Vuyyuru KR, Strasser P. Catal Today, 2012, 195: 144-154 CrossRef Google Scholar

[34] Chadderdon DJ, Xin L, Qi J, Qiu Y, Krishna P, More KL, Li W. Green Chem, 2014, 16: 3778-3786 CrossRef Google Scholar

[35] Wan X, Zhou C, Chen J, Deng W, Zhang Q, Yang Y, Wang Y. ACS Catal, 2014, 4: 2175-2185 CrossRef Google Scholar

[36] Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y. ChemCatChem, 2015, 7: 2853-2863 CrossRef Google Scholar

  • Scheme 1

    Reaction pathways for aerobic oxidation of HMF to FDCA on Ru/C.

  • Figure 1

    TEM images (scale bar=20 nm) and size distributions of different metal catalysts. (a) Ru/C; (b) Pt/C; (c) Pd/C; (d) Ru/ZrO2; (e) Ru/TiO2; (f) Ru/Al2O3.

  • Figure 2

    Effect of Ru loading of Ru/C catalysts on their catalytic performances in the aerobic oxidation of HMF to FDCA. Reaction conditions: 383 K, 4 h, 1.0 MPa O2, 0.1 g HMF, HMF/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g Mg(OH)2.

  • Figure 3

    TEM images (scale bar=20 nm) and size distributions of Ru/C catalysts with different Ru loadings. (a) 0.5 wt%; (b) 1.0 wt%; (c) 2.0 wt%; (d) 3.0 wt%.

  • Figure 4

    HMF conversion and FDCA selectivity for six reaction cycles on Ru/C (with 5 wt% Ru loading). Reaction conditions: 383 K, 8 h, 1.0 MPa O2, 0.1 g HMF, HMF/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g Mg(OH)2.

  • Figure 5

    TEM image (scale bar=20 nm) and size distribution of Ru/C after six reaction cycles.

  • Figure 6

    Effect of the reaction time on the catalytic performances of Ru/C in aerobic oxidation of HMF. Reaction conditions: 383 K, 1.0 MPa O2, 0.1 g HMF, HMF/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g Mg(OH)2.

  • Figure 7

    Effect of reaction temperature on product selectivity on Ru/C at 100% HMF conversion. Reaction conditions: 383 K, 4 h, 1.0 MPa O2, 0.1 g HMF, HMF/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g Mg(OH)2.

  • Figure 8

    Effect of O2 pressure on the catalytic performances of Ru/C. Reaction conditions: 383 K, 4 h, 0.1 g HMF, HMF/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g Mg(OH)2.

  • Table 1   HMF conversion and product selectivity of activated carbon-supported Pt, Pd and different supported Ru catalysts in aerobic oxidation of HMF

    Entry

    Catalyst b)

    HMF conversion (%)

    Selectivity (%)

    Carbon balance (%)

    FDCA

    FFCA

    1

    Ru/C

    100

    97.3

    0

    97.3

    2

    Pt/C

    100

    73.4

    18.2

    91.6

    3

    Pd/C

    100

    33.1

    52.3

    85.4

    4

    Ru/ZrO2 c)

    100

    82.2

    4.1

    86.3

    5

    Ru/TiO2 c)

    100

    80.8

    5.3

    86.1

    6

    Ru/Al2O3 c)

    100

    86.1

    1.9

    88.0

    Reaction conditions: 383 K, 8 h, 1.0 MPa O2, 0.1 g HMF, HMF/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g Mg(OH)2; b) 5.0 wt% metal loading; c) HMF/metal=30:1 (molar ratio).

  • Table 2   Effect of base additives on HMF conversion and product selectivity of Ru/C in aerobic oxidation of HMF

    Entry

    Base additive

    HMF conversion (%)

    Selectivity (%)

    Carbon balance (%)

    FDCA

    FFCA

    1

    none

    100

    52.2

    38.4

    90.6

    2

    Mg(OH)2

    100

    97.3

    0

    97.3

    3

    HT (Mg/Al=4)

    100

    89.6

    0

    89.6

    4

    HT (Mg/Al=3)

    100

    76.4

    0

    76.4

    5

    HT (Mg/Al=2)

    100

    73.3

    5.1

    78.4

    6

    Al2O3

    100

    47.1

    15.3

    62.4

    7

    Al(OH)3

    100

    62.3

    4.5

    66.8

    8

    La2O3

    100

    25.1

    60.5

    85.6

    9

    CaCO3

    100

    61.9

    23.3

    85.2

    10

    NaOH

    100

    72.3

    0

    72.3

    11

    Na2CO3

    100

    68.5

    1.2

    69.7

    Reaction conditions: 383 K, 8 h, 1.0 MPa O2, 0.1 g HMF, HMF/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g base.

  • Table 3   Rate constant and apparent activation energy for aerobic oxidation of HMF, DFF and FFCA on Ru/C catalyst

    Reaction

    k (s−1) b)

    Ea (kJ/mol) c)

    Oxidation of HMF to DFF

    9.15´10−5

    34.2

    Oxidation of DFF to FFCA

    8.05´10−5

    38.6

    Oxidation of HMF to FDCA

    2.49´10−6

    52.5

    Reaction conditions: 1.0 MPa O2, 0.1 g substrate, substrate/metal=40:1 (molar ratio), 20 mL H2O, 0.2 g Mg(OH)2; b) reaction at 313 K (reaction rate constants were estimated by assuming a first-order reaction in HMF and DFF); c) reaction at 303–333 K (activation energy was calculated by the Arrhenius equation).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1