logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 958-963(2017) https://doi.org/10.1007/s11426-016-0507-7

Cooperative effect from cation and anion of pyridine-containing anion-based ionic liquids for catalysing CO2 transformation at ambient conditions

More info
  • ReceivedDec 1, 2016
  • AcceptedDec 30, 2016
  • PublishedMay 9, 2017

Abstract

Pyridine-containing anion-based ionic liquids (PA-ILs) with two kinds of interaction sites to bind CO2, e.g., [P4444][2-OP], were found to be highly efficient for catalysing the cycloaddition reactions of atmospheric CO2 with epoxides at room temperature under metal- and halogen-free conditions, producing a series of cyclic carbonates in high yields. It was demonstrated that the cooperative interaction from two interaction sites in the anions of PA-ILs activated CO2, while the cation activated the epoxides substrates via coordination to the central P+ unit, thus resulting in the high activity of the IL catalysts.


Funded by

National Natural Science Foundation of China(21403252,21533011)

Chinese Academy of Sciences(QYZDY-SSW-SLH013)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21403252, 21533011), and the Chinese Academy of Sciences (QYZDY-SSW-SLH013).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Liu Q, Wu LP, Jackstell R, Beller M. Nat Comm, 2015, 6: 5933. Google Scholar

[2] He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620-9633 CrossRef PubMed Google Scholar

[3] Du XL, Jiang Z, Su DS, Wang JQ. ChemSusChem, 2016, 9: 322-332 CrossRef PubMed Google Scholar

[4] Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem, 2015, 17: 157-168 CrossRef Google Scholar

[5] Kimura T, Kamata K, Mizuno N. Angew Chem Int Ed, 2012, 51: 6700-6703 CrossRef PubMed Google Scholar

[6] Song QW, Chen WQ, Ma R, Yu A, Li QY, Chang Y, He LN. ChemSusChem, 2015, 8: 821-827 CrossRef PubMed Google Scholar

[7] Zhao Y, Yu B, Yang Z, Zhang H, Hao L, Gao X, Liu Z. Angew Chem Int Ed, 2014, 53: 5922-5925 CrossRef PubMed Google Scholar

[8] Hu J, Ma J, Zhu Q, Zhang Z, Wu C, Han B. Angew Chem Int Ed, 2015, 54: 5399-5403 CrossRef PubMed Google Scholar

[9] Song QW, Yu B, Li XD, Ma R, Diao ZF, Li RG, Li W, He LN. Green Chem, 2014, 16: 1633 CrossRef Google Scholar

[10] Zhao Y, Wu Y, Yuan G, Hao L, Gao X, Yang Z, Yu B, Zhang H, Liu Z. Chem Asian J, 2016, 11: 2735-2740 CrossRef PubMed Google Scholar

[11] Cui G, Wang J, Zhang S. Chem Soc Rev, 2016, 45: 4307-4339 CrossRef PubMed Google Scholar

[12] Zhao Y, Yang Z, Yu B, Zhang H, Xu H, Hao L, Han B, Liu Z. Chem Sci, 2015, 6: 2297-2301 CrossRef Google Scholar

[13] Gao X, Yu B, Yang Z, Zhao Y, Zhang H, Hao L, Han B, Liu Z. ACS Catal, 2015, 5: 6648-6652 CrossRef Google Scholar

[14] Hao L, Zhao Y, Yu B, Yang Z, Zhang H, Han B, Gao X, Liu Z. ACS Catal, 2015, 5: 4989-4993 CrossRef Google Scholar

[15] Wang C, Luo H, Jiang D, Li H, Dai S. Angew Chem Int Ed, 2010, 49: 5978-5981 CrossRef PubMed Google Scholar

[16] Wang C, Luo X, Luo H, Jiang D, Li H, Dai S. Angew Chem Int Ed, 2011, 50: 4918-4922 CrossRef PubMed Google Scholar

[17] Luo X, Guo Y, Ding F, Zhao H, Cui G, Li H, Wang C. Angew Chem Int Ed, 2014, 53: 7053-7057 CrossRef PubMed Google Scholar

[18] Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF. J Am Chem Soc, 2010, 132: 2116-2117 CrossRef PubMed Google Scholar

[19] Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem Rev, 2010, 110: 4554-4581 CrossRef PubMed Google Scholar

[20] Sakakura T, Kohno K. Chem Commun, 2009: 1312-1330 CrossRef PubMed Google Scholar

[21] Omae I. Coord Chem Rev, 2012, 256: 1384-1405 CrossRef Google Scholar

[22] North M, Pasquale R, Young C. Green Chem, 2010, 12: 1514 CrossRef Google Scholar

[23] Comerford JW, Ingram IDV, North M, Wu X. Green Chem, 2015, 17: 1966-1987 CrossRef Google Scholar

[24] Lang XD, He LN. Chem Record, 2016, 16: 1337-1352 CrossRef PubMed Google Scholar

[25] Dai WL, Luo SL, Yin SF, Au CT. Appl Catal A-Gen, 2009, 366: 2-12 CrossRef Google Scholar

[26] Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE. ChemSusChem, 2015, 8: 2436-2454 CrossRef PubMed Google Scholar

[27] Whiteoak CJ, Kielland N, Laserna V, Escudero-Adán EC, Martin E, Kleij AW. J Am Chem Soc, 2013, 135: 1228-1231 CrossRef PubMed Google Scholar

[28] Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T. Chem Commun, 2012, 48: 4489-4491 CrossRef PubMed Google Scholar

[29] Roshan KR, Mathai G, Kim J, Tharun J, Park GA, Park DW. Green Chem, 2012, 14: 2933 CrossRef Google Scholar

[30] Luo R, Zhou X, Fang Y, Ji H. Carbon, 2015, 82: 1-11 CrossRef Google Scholar

[31] Werner T, Büttner H. ChemSusChem, 2014, 7: 3268-3271 CrossRef PubMed Google Scholar

[32] Hardman-Baldwin AM, Mattson AE. ChemSusChem, 2014, 7: 3275-3278 CrossRef PubMed Google Scholar

[33] Gennen S, Alves M, Méreau R, Tassaing T, Gilbert B, Detrembleur C, Jerome C, Grignard B. ChemSusChem, 2015, 8: 1845-1849 CrossRef PubMed Google Scholar

[34] Xie Y, Wang TT, Liu XH, Zou K, Deng WQ. Nat Commun, 2013, 4: 1960 CrossRef PubMed ADS Google Scholar

[35] Gao WY, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen YS, Ma S. Angew Chem Int Ed, 2014, 53: 2615-2619 CrossRef PubMed Google Scholar

[36] Zhou H, Wang GX, Zhang WZ, Lu XB. ACS Catal, 2015, 5: 6773-6779 CrossRef Google Scholar

[37] Chen X, Li X, Song H, Qian Y, Wang F. Tetrahedron Lett, 2011, 52: 3588-3591 CrossRef Google Scholar

  • Figure 1

    Dependence of the yield on reaction time. Reaction conditions: epichlorohydrine (5mmol), [P4444][2-OP] (10 mol%), CO2 (0.1 MPa), 303 K.

  • Scheme 1

    Structures of the cation and anions in as-synthesized ILs ([P4444][2-OP], [P4444][3-OP], [P4444][4-OP], [P4444][PhO], [N4444][2-OP] and [Et-DBU][2-OP]).

  • Scheme 2

    Possible pathway for the reaction of the cycloaddition reaction of CO2 and epoxides catalyzed by [P4444][2-OP] (color online).

  • Figure 2

    13C NMR spectrum of [P4444][2-OP] (cations are not shown) before and after exposure to atmospheric CO2 (color online).

  • Table 1   Cyclic addition of CO with epichlorohydrin catalyzed by ILs

    Entry

    IL

    Yield (%)

    1

    0

    2

    [P4444][2-OP]

    90

    3

    [P4444][3-OP]

    77

    4

    [P4444][4-OP]

    70

    5

    [P4444][PhO]

    55

    6

    [P4444][NO3]

    10

    7

    [N4444][2-OP]

    61

    8

    [Et-DBU][2-OP]

    42

    9 b)

    [P4444][2-OP]

    25

    10 c)

    [P4444][2-OP]

    24

    11 d)

    [P4444][2-OP]

    98

    Reaction conditions: substrate (5 mmol), IL (10% mmol), CO2 (0.1 MPa), 303 K, 20 h; b) 4 h; c) 353 K, 4 h; d) 353 K, 2.0 MPa, 4 h.

  • Table 2   The mulliken atomic charges of the O and C atoms in activated forms of CO in the anions

    Entry

    IL-CO2 complex

    Mulliken atomic charges (carbonate)

    O charge

    C charge

    1

    [P4444][2-OP]-CO2

    −0.402

    0.769

    2

    [P4444][3-OP]-CO2

    −0.391

    0.738

    3

    [P4444][4-OP]-CO2

    −0.385

    0.735

    Carried out at the B3LYP/6-31++G (d, p) level.

  • Table 3   Cyclic addition of COwith various epoxides catalyzed by [P] [2-OP]

    Entry

    Substrate

    Product

    Yield (%)

    1

    90

    2

    86

    3 b)

    84

    4 b)

    80

    5 b)

    59

    Reaction conditions: substrate (5 mmol), IL (10% mmol), CO2 (0.1 MPa), 303K, 20 h; b) substrate (1 mmol), IL (50% mmol).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1