logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 934-941(2017) https://doi.org/10.1007/s11426-016-9019-8

Effects of water content on the dissolution behavior of wool keratin using 1-ethyl-3-methylimidazolium dimethylphosphate

More info
  • ReceivedDec 27, 2016
  • AcceptedFeb 15, 2017
  • PublishedMay 10, 2017

Abstract

Ionic liquids (ILs) are eco-friend and recyclable solvents for dissolution of wool keratin, and water is often used as antisolvent to regenerate keratin from IL solution. To recycle the ILs, removing water is the necessary step. However, complete removal of the water is energy-intensive and costly. The water in ionic liquids would change the physicochemical properties and cluster structures of the IL and further affect its dissolution behavior on keratin. Here, 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim]DMP) was used for experiments due to its good performance on dissolving keratin. The experimental and simulation results showed that the dissolving capability of [Emim]DMP was decreased and the interactions between cation and anion became weaker with water concentration increasing. Furthermore, the dissolution time of wool keratin in [Emim]DMP increased with water content rising. At the same time, the effect of water in ILs on the secondary structure distribution and thermal stability of regenerated keratin was not obvious. In this work, by taking the structures of [Emim]DMP, keratin dissolution time and properties of the regenerated keratin into consideration, a balanced range of water content in [Emim]DMP was determined, which could not only reduce recycling cost but also not affect the dissolution behavior of the IL.


Funded by

National Natural Science Foundation of China(21576262)

National Natural Science Fund for Distinguished Young Scholars(21425625)

International Cooperation and Exchange of the National Natural Science Foundation of China(51561145020)

Key Research Program of Frontier Sciences

CAS(QYZDY-SSW-JSC011)

“Recruitment of Outstanding Technologist” of Chinese Academy of Sciences.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21576262), the National Natural Science Fund for Distinguished Young Scholars (21425625), International Cooperation and Exchange of the National Natural Science Foundation of China (51561145020), Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-JSC011) and “Recruitment of Outstanding Technologist” of Chinese Academy of Sciences.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] McKittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyers MA. JOM, 2012, 64: 449-468 CrossRef ADS Google Scholar

[2] Baias M, Demco DE, Popescu C, Fechete R, Melian C, Blümich B, Möller M. J Phys Chem B, 2009, 113: 2184-2192 CrossRef PubMed Google Scholar

[3] Rouse JG, van Dyke ME. Materials, 2010, 3: 999-1014 CrossRef ADS Google Scholar

[4] Ullah A, Vasanthan T, Bressler D, Elias AL, Wu J. Biomacromolecules, 2011, 12: 3826-3832 CrossRef PubMed Google Scholar

[5] Zhao W, Yang R, Zhang Y, Wu L. Green Chem, 2012, 14: 3352 CrossRef Google Scholar

[6] Zhang S, Han B, Wang J. Sci China Chem, 2016, 59: 505-506 CrossRef Google Scholar

[7] Rogers RD, Seddon KR. Science, 2003, 302: 792-793 CrossRef PubMed Google Scholar

[8] Nie Y, Dong Y, Gao H, Zhang X, Zhang S. Sci China Chem, 2016, 59: 526-531 CrossRef Google Scholar

[9] Nie Y, Gong X, Gao HS, Zhang XP, Zhang SJ. Sci China Chem, 2014, 57: 1766-1773 CrossRef Google Scholar

[10] Zhang Y, Xu A, Lu B, Li Z, Wang J. Carbohyd Polym, 2015, 117: 666-672 CrossRef PubMed Google Scholar

[11] Passos H, Freire MG, Coutinho JAP. Green Chem, 2014, 16: 4786-4815 CrossRef PubMed Google Scholar

[12] Xie H, Li S, Zhang S. Green Chem, 2005, 7: 606 CrossRef Google Scholar

[13] Idris A, Vijayaraghavan R, Patti AF, MacFarlane DR. ACS Sustain Chem Eng, 2014, 2: 1888-1894 CrossRef Google Scholar

[14] Idris A, Vijayaraghavan R, Rana UA, Patti AF, MacFarlane DR. Green Chem, 2014, 16: 2857 CrossRef Google Scholar

[15] Wang L, Nie Y, Zhang X, Zeng S, Zhang S, Zheng S. Chem Eng Technol, 2016, 39: 979-986 CrossRef Google Scholar

[16] Zheng S, Nie Y, Zhang S, Zhang X, Wang L. ACS Sustain Chem Eng, 2015, 3: 2925-2932 CrossRef Google Scholar

[17] Brennecke JF, Maginn EJ. AIChE J, 2001, 47: 2384-2389 CrossRef Google Scholar

[18] Mai NL, Ahn K, Koo YM. Process Biochem, 2014, 49: 872-881 CrossRef Google Scholar

[19] Kelkar MS, Maginn EJ. J Phys Chem B, 2007, 111: 4867-4876 CrossRef PubMed Google Scholar

[20] Schröder C, Rudas T, Neumayr G, Benkner S, Steinhauser O. J Chem Phys, 2007, 127: 234503 CrossRef PubMed ADS Google Scholar

[21] Picálek J, Minofar B, Kolafa J, Jungwirth P. Phys Chem Chem Phys, 2008, 10: 5765-5775 CrossRef PubMed ADS Google Scholar

[22] Mallik BS, Siepmann JI. J Phys Chem B, 2010, 114: 12577-12584 CrossRef PubMed Google Scholar

[23] Migliorati V, Ballirano P, Gontrani L, Triolo A, Caminiti R. J Phys Chem B, 2011, 115: 4887-4899 CrossRef PubMed Google Scholar

[24] Zahn S, Wendler K, Delle Site L, Kirchner B. Phys Chem Chem Phys, 2011, 13: 15083 CrossRef PubMed Google Scholar

[25] Zhang X, Hu D, Zhao Z. J Chem Eng Data, 2014, 59: 205-211 CrossRef Google Scholar

[26] Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H. Biomacromolecules, 2013, 14: 1741-1750 CrossRef PubMed Google Scholar

[27] Niazi AA, Rabideau BD, Ismail AE. J Phys Chem B, 2013, 117: 1378-1388 CrossRef PubMed Google Scholar

[28] Shi J, Balamurugan K, Parthasarathi R, Sathitsuksanoh N, Zhang S, Stavila V, Subramanian V, Simmons BA, Singh S. Green Chem, 2014, 16: 3830-3840 CrossRef Google Scholar

[29] Sciarini LS, Rolland-Sabaté A, Guilois S, Decaen P, Leroy E, Le Bail P. Green Chem, 2015, 17: 291-299 CrossRef Google Scholar

[30] Jiang X, Nie Y, Li C, Wang Z. Fuel, 2008, 87: 79-84 CrossRef Google Scholar

[31] Chan K-Y, Wasserman B P. Cereal Chem, 1993, 70: 22. Google Scholar

[32] Ellman GL. Arch Biochem Biophys, 1959, 82: 70-77 CrossRef Google Scholar

[33] Thannhauser T W, Konishi Y, Scheraga H A. Methods Enzymol, 1987, 143: 115–119. Google Scholar

[34] Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc, 1995, 117: 5179–5197. Google Scholar

[35] Zhang X, Liu X, Yao X, Zhang S. Ind Eng Chem Res, 2011, 50: 8323-8332 CrossRef Google Scholar

[36] Zhang S, Huo F. Green Energy Environ, 2016, 11: 75–78. Google Scholar

[37] Liu Z, Huang S, Wang W. J Phys Chem B, 2004, 108: 12978-12989 CrossRef Google Scholar

[38] Berendsen HJC, Grigera JR, Straatsma TP. J Phys Chem, 1987, 91: 6269-6271 CrossRef Google Scholar

[39] Plimpton S. J Comput Phys, 1995, 117: 1-19 CrossRef ADS Google Scholar

[40] Hockney RW, Eastwood JW. Computer Simulation Using Particle. London: Taylor & Francis, 1989. Google Scholar

[41] Martínez L, Andrade R, Birgin EG, Martínez JM. J Comput Chem, 2009, 30: 2157-2164 CrossRef PubMed Google Scholar

[42] Wilkes J. J Mol Catal A-Chem, 2004, 214: 11-17 CrossRef Google Scholar

[43] Liu J, Cao D, Zhang L. J Phys Chem C, 2008, 112: 6653-6661 CrossRef Google Scholar

[44] Migliorati V, Zitolo A, D'Angelo P. J Phys Chem B, 2013, 117: 12505-12515 CrossRef PubMed Google Scholar

[45] Bai T, Ge R, Gao Y, Chai J, Slattery JM. Phys Chem Chem Phys, 2013, 15: 19301 CrossRef PubMed ADS Google Scholar

[46] Wang B, Yang W, McKittrick J, Meyers MA. Prog Mater Sci, 2016, 76: 229-318 CrossRef Google Scholar

  • Scheme 1

    Structure of [Emim]DMP.

  • Figure 1

    Viscosity of the [Emim]DMP/water mixture systems (color online).

  • Figure 2

    Density of the [Emim]DMP/water mixture systems (color online).

  • Figure 3

    Tgs of the [Emim]DMP/water mixture systems.

  • Figure 4

    The 1H chemical shifts of H-2, H-4, H-5 with increasing water concentration (color online).

  • Figure 5

    Center of mass radial distribution functions of H2O around cation and anion in the presence of 0.75 mole fraction of H2O (color online).

  • Figure 6

    Center of mass radial distribution functions and corresponding coordination numbers of cation and anion in the mixture of [Emim]DMP/H2O with different content of H2O (color online).

  • Figure 7

    Snapshots of mixtures of [Emim]DMP and H2O in the presence of 0, 0.17, 0.29, 0.38, 0.44, 0.67, 0.75 mole fraction of H2O. Color code: cations, yellow; anions, blue; O atoms, red; H atoms, white (color online).

  • Figure 8

    The dissolution time of wool keratin with different water mole ratios in IL.

  • Figure 9

    Variation of the content of disulfide bond and sulfhydryl groups with rising water mole ratio in IL (color online).

  • Figure 10

    TGA curves of the keratin regenerated at [Emim]DMP with different water content (color online).

  • Table 1   Ion interaction energy of [Emim]DMP with different content of HO

    Mole fraction of H2O

    Interaction energy (kJ mol−1)

    Cation-cation

    Cation-anion

    Anion-anion

    Elec

    VDW

    Elec

    VDW

    Elec

    VDW

    0

    2669.97

    −20.62

    −5737.44

    −50.90

    2626.42

    −12.90

    0.17

    2624.24

    −20.10

    −5643.50

    −51.23

    2580.84

    −12.71

    0.29

    2583.28

    −19.66

    −5558.61

    −50.71

    2536.02

    −12.57

    0.38

    2542.49

    −19.00

    −5474.81

    −50.57

    2494.30

    −12.31

    0.44

    2507.37

    −18.64

    −5402.84

    −50.05

    2457.75

    −12.19

    0.67

    2274.15

    −15.83

    −4923.16

    −46.86

    2231.55

    −10.98

    0.75

    2110.63

    −13.98

    −4585.00

    −44.08

    2071.16

    −10.12

  • Table 2   The percentage content of secondary structures of the regenerated keratin

    Mole ratio (water/IL)

    α-Helix (%)

    β-Sheet+random coil (%)

    0

    83.8

    16.2

    0.2

    82.8

    17.2

    0.4

    79.0

    21.1

    0.6

    70.0

    30.0

    0.8

    87.0

    13.0

    1

    72.1

    27.9

    2

    86.2

    14.8

    3

    93.7

    6.3

  • Table 3   Decomposition temperature of the keratin regenerated from solvents with different water contents

    Mole ratio (water/IL)

    Td (°C)

    Mole ratio (water/IL)

    Td (°C)

    0.0

    236

    0.8

    239

    0.2

    237

    1.0

    240

    0.4

    237

    2.0

    236

    0.6

    239

    3.0

    237

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1