logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 870-886(2017) https://doi.org/10.1007/s11426-016-9035-1

Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes

More info
  • ReceivedNov 13, 2016
  • AcceptedMar 13, 2017
  • PublishedMay 10, 2017

Abstract

With concerns of diminishing fossil fuel reserves and environmental deterioration, great efforts have been made to explore novel approaches of efficiently utilizing bio-renewable feedstocks to produce chemicals and fuels. 5-Hydroxymethylfurfural (HMF), generated from dehydration of six-carbon ketose, is regarded as a primary and versatile renewable building block to realize the goal of production of these high valued products from renewable biomass resources transformation. In this review, we summarize the recent advances via green routes in the heterogeneous reaction system for the catalytic production of HMF from glucose conversion, and emphasize reaction pathways of these reaction approaches based on the fundamental mechanistic chemistry as well as highlight the challenges (such as separation and purification of products, reusing and regeneration of catalyst, recycling solvent) in this field.


Funded by

National Natural Science Foundation of China(91545103,21273071,21403065)

Commission of Science and Technology of Shanghai Municipality(10dz2220500)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (91545103, 21273071, 21403065), and the Commission of Science and Technology of Shanghai Municipality (10dz2220500).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Cai H, Li C, Wang A, Zhang T. Catal Today, 2014, 234: 59-65 CrossRef Google Scholar

[2] Delidovich I, Palkovits R. ChemSusChem, 2016, 9: 547-561 CrossRef PubMed Google Scholar

[3] Deng W, Zhang Q, Wang Y. Catal Today, 2014, 234: 31-41 CrossRef Google Scholar

[4] Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Chem Rev, 2015, 115: 6811-6853 CrossRef PubMed Google Scholar

[5] Liu X, Wang X, Yao S, Jiang Y, Guan J, Mu X. RSC Adv, 2014, 4: 49501-49520 CrossRef Google Scholar

[6] Luterbacher JS, Martin Alonso D, Dumesic JA. Green Chem, 2014, 16: 4816-4838 CrossRef Google Scholar

[7] Wang L, Xiao FS. Green Chem, 2015, 17: 24-39 CrossRef Google Scholar

[8] Zhang X, Wilson K, Lee AF. Chem Rev, 2016, 116: 12328-12368 CrossRef PubMed Google Scholar

[9] Caratzoulas S, Davis ME, Gorte RJ, Gounder R, Lobo RF, Nikolakis V, Sandler SI, Snyder MA, Tsapatsis M, Vlachos DG. J Phys Chem C, 2014, 118: 22815-22833 CrossRef Google Scholar

[10] Chatterjee C, Pong F, Sen A. Green Chem, 2015, 17: 40-71 CrossRef Google Scholar

[11] Wang J, Xi J, Wang Y. Green Chem, 2015, 17: 737-751 CrossRef Google Scholar

[12] Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM. Green Chem, 2011, 13: 754-793 CrossRef Google Scholar

[13] Chinnappan A, Baskar C, Kim H. RSC Adv, 2016, 6: 63991-64002 CrossRef Google Scholar

[14] Saha B, Abu-Omar MM. Green Chem, 2014, 16: 24-38 CrossRef Google Scholar

[15] Teong SP, Yi G, Zhang Y. Green Chem, 2014, 16: 2015-2026 CrossRef Google Scholar

[16] Wang T, Nolte MW, Shanks BH. Green Chem, 2014, 16: 548-572 CrossRef Google Scholar

[17] Xue Z, Ma MG, Li Z, Mu T. RSC Adv, 2016, 6: 98874-98892 CrossRef Google Scholar

[18] Chheda JN, Huber GW, Dumesic JA. Angew Chem Int Ed, 2007, 46: 7164-7183 CrossRef PubMed Google Scholar

[19] Tong X, Ma Y, Li Y. Appl Catal A-Gen, 2010, 385: 1-13 CrossRef Google Scholar

[20] Assary RS, Curtiss LA. Energy Fuels, 2012, 26: 1344–1352. Google Scholar

[21] Boronat M, Concepcion P, Corma A, Renz M, Valencia S. J Catal, 2005, 234: 111-118 CrossRef Google Scholar

[22] Li G, Pidko EA, Hensen EJM. ACS Catal, 2016, 6: 4162-4169 CrossRef Google Scholar

[23] Li J, Li J, Zhang D, Liu C. J Phys Chem B, 2015, 119: 13398-13406 CrossRef PubMed Google Scholar

[24] Li YP, Head-Gordon M, Bell AT. ACS Catal, 2014, 4: 1537-1545 CrossRef Google Scholar

[25] Loerbroks C, van Rijn J, Ruby MP, Tong Q, Schüth F, Thiel W. Chem Eur J, 2014, 20: 12298-12309 CrossRef PubMed Google Scholar

[26] Pidko EA, Degirmenci V, Hensen EJM. ChemCatChem, 2012, 4: 1263-1271 CrossRef Google Scholar

[27] Pidko EA, Degirmenci V, van Santen RA, Hensen EJM. Angew Chem Int Ed, 2010, 49: 2530-2534 CrossRef PubMed Google Scholar

[28] Qian X. J Phys Chem B, 2013, 117: 11460-11465 CrossRef PubMed Google Scholar

[29] Qian X, Wei X. J Phys Chem B, 2012, 116: 10898-10904 CrossRef PubMed Google Scholar

[30] Rai N, Caratzoulas S, Vlachos DG. ACS Catal, 2013, 3: 2294-2298 CrossRef Google Scholar

[31] Saravanamurugan S, Riisager A, Taarning E, Meier S. ChemCatChem, 2016, 8: 3107-3111 CrossRef Google Scholar

[32] Yang G, Pidko EA, Hensen EJM. ChemSusChem, 2013, 6: 1688-1696 CrossRef PubMed Google Scholar

[33] Yang L, Tsilomelekis G, Caratzoulas S, Vlachos DG. ChemSusChem, 2015, 8: 1334-1341 CrossRef PubMed Google Scholar

[34] Zhang ZC. Adv Catal, 2006, 49: 153–237. Google Scholar

[35] Zhao H, Holladay JE, Brown H, Zhang ZC. Science, 2007, 316: 1597-1600 CrossRef PubMed ADS Google Scholar

[36] Fenn TD, Ringe D, Petsko GA. Biochemistry, 2004, 43: 6464-6474 CrossRef PubMed Google Scholar

[37] Moliner M, Román-Leshkov Y, Davis ME. Proc Natl Acad Sci USA, 2010, 107: 6164-6168 CrossRef PubMed ADS Google Scholar

[38] Nikolla E, Román-Leshkov Y, Moliner M, Davis ME. ACS Catal, 2011, 1: 408-410 CrossRef Google Scholar

[39] Román-Leshkov Y, Moliner M, Labinger JA, Davis ME. Angew Chem Int Ed, 2010, 49: 8954-8957 CrossRef PubMed Google Scholar

[40] Bermejo-Deval R, Gounder R, Davis ME. ACS Catal, 2012, 2: 2705-2713 CrossRef Google Scholar

[41] Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang SJ, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME. Proc Natl Acad Sci USA, 2012, 109: 9727-9732 CrossRef PubMed ADS Google Scholar

[42] Yu Y, Wu H. Ind Eng Chem Res, 2011, 50: 10500-10508 CrossRef Google Scholar

[43] Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. J Supercrit Fluid, 2007, 40: 381-388 CrossRef Google Scholar

[44] Lee YC, Chen CT, Chiu YT, Wu KCW. ChemCatChem, 2013, 5: 2153-2157 CrossRef Google Scholar

[45] Vennestrøm PNR, Christensen CH, Pedersen S, Grunwaldt JD, Woodley JM. ChemCatChem, 2010, 2: 249-258 CrossRef Google Scholar

[46] Huang R, Qi W, Su R, He Z. Chem Commun, 2010, 46: 1115-1117 CrossRef PubMed Google Scholar

[47] Grande PM, Bergs C, Domínguez de María P. ChemSusChem, 2012, 5: 1203-1206 CrossRef PubMed Google Scholar

[48] Simeonov SP, Coelho JAS, Afonso CAM. ChemSusChem, 2013, 6: 997-1000 CrossRef PubMed Google Scholar

[49] Huang H, Denard CA, Alamillo R, Crisci AJ, Miao Y, Dumesic JA, Scott SL, Zhao H. ACS Catal, 2014, 4: 2165-2168 CrossRef Google Scholar

[50] Delidovich I, Palkovits R. Catal Sci Technol, 2014, 4: 4322-4329 CrossRef Google Scholar

[51] Liu C, Carraher JM, Swedberg JL, Herndon CR, Fleitman CN, Tessonnier JP. ACS Catal, 2014, 4: 4295-4298 CrossRef Google Scholar

[52] Yang Q, Sherbahn M, Runge T. ACS Sustain Chem Eng, 2016, 4: 3526-3534 CrossRef Google Scholar

[53] Yang Q, Zhou S, Runge T. J Catal, 2015, 330: 474-484 CrossRef Google Scholar

[54] Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H. Carbohyd Res, 2005, 340: 1925-1930 CrossRef PubMed Google Scholar

[55] Qi X, Watanabe M, Aida TM, Smith Jr RL. Catal Commun, 2008, 9: 2244-2249 CrossRef Google Scholar

[56] Ohara M, Takagaki A, Nishimura S, Ebitani K. Appl Catal A-Gen, 2010, 383: 149-155 CrossRef Google Scholar

[57] Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem Commun, 2009: 6276–6278. Google Scholar

[58] Yu S, Kim E, Park S, Song IK, Jung JC. Catal Commun, 2012, 29: 63-67 CrossRef Google Scholar

[59] Despax S, Estrine B, Hoffmann N, Le Bras J, Marinkovic S, Muzart J. Catal Commun, 2013, 39: 35-38 CrossRef Google Scholar

[60] Román-Leshkov Y, Davis ME. ACS Catal, 2011, 1: 1566-1580 CrossRef Google Scholar

[61] Cao Q, Guo X, Yao S, Guan J, Wang X, Mu X, Zhang D. Carbohyd Res, 2011, 346: 956-959 CrossRef PubMed Google Scholar

[62] Hu L, Sun Y, Lin L. Ind Eng Chem Res, 2012, 51: 1099-1104 CrossRef Google Scholar

[63] Liu W, Holladay J. Catal Today, 2013, 200: 106-116 CrossRef Google Scholar

[64] Pidko EA, Degirmenci V, van Santen RA, Hensen EJM. Inorg Chem, 2010, 49: 10081-10091 CrossRef PubMed Google Scholar

[65] Binder JB, Cefali AV, Blank JJ, Raines RT. Energy Environ Sci, 2010, 3: 765-771 CrossRef Google Scholar

[66] Zhang Y, Pidko EA, Hensen EJM. Chem Eur J, 2011, 17: 5281-5288 CrossRef PubMed Google Scholar

[67] He J, Zhang Y, Chen EYX. ChemSusChem, 2013, 6: 61-64 CrossRef PubMed Google Scholar

[68] Yong G, Zhang Y, Ying JY. Angew Chem Int Ed, 2008, 47: 9345-9348 CrossRef PubMed Google Scholar

[69] Qi X, Watanabe M, Aida TM, Smith Jr RL. ChemSusChem, 2010, 3: 1071-1077 CrossRef PubMed Google Scholar

[70] Zhang Z, Zhao ZK. Bioresource Tech, 2011, 102: 3970-3972 CrossRef PubMed Google Scholar

[71] Degirmenci V, Pidko EA, Magusin PCMM, Hensen EJM. ChemCatChem, 2011, 3: 969-972 CrossRef Google Scholar

[72] Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG. J Am Chem Soc, 2013, 135: 3997-4006 CrossRef PubMed Google Scholar

[73] Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA. ACS Catal, 2012, 2: 930-934 CrossRef Google Scholar

[74] Zhou X, Zhang Z, Liu B, Xu Z, Deng K. Carbohyd Res, 2013, 375: 68-72 CrossRef PubMed Google Scholar

[75] Deng T, Cui X, Qi Y, Wang Y, Hou X, Zhu Y. Chem Commun, 2012, 48: 5494-5496 CrossRef PubMed Google Scholar

[76] Zhang Z, Wang Q, Xie H, Liu W, Zhao ZK. ChemSusChem, 2011, 4: 131-138 CrossRef PubMed Google Scholar

[77] Zhang Z, Liu B, Zhao ZK. Starch-Stärke, 2012, 64: 770-775 CrossRef Google Scholar

[78] Hu S, Zhang Z, Song J, Zhou Y, Han B. Green Chem, 2009, 11: 1746-1749 CrossRef Google Scholar

[79] Assary RS, Redfern PC, Hammond JR, Greeley J, Curtiss LA. J Phys Chem B, 2010, 114: 9002-9009 CrossRef PubMed Google Scholar

[80] Ding D, Wang J, Xi J, Liu X, Lu G, Wang Y. Green Chem, 2014, 16: 3846-3853 CrossRef Google Scholar

[81] Upare PP, Yoon JW, Kim MY, Kang HY, Hwang DW, Hwang YK, Kung HH, Chang JS. Green Chem, 2013, 15: 2935-2943 CrossRef Google Scholar

[82] Weingarten R, Cho J, Xing R, Conner Jr WC, Huber GW. ChemSusChem, 2012, 5: 1280-1290 CrossRef PubMed Google Scholar

[83] Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner Jr WC, Dumesic JA, Huber GW. J Catal, 2013, 304: 123-134 CrossRef Google Scholar

[84] Liu B, Zhang Z. RSC Adv, 2013, 3: 12313-12319 CrossRef Google Scholar

[85] Liu B, Zhang Z, Huang K, Fang Z. Fuel, 2013, 113: 625-631 CrossRef Google Scholar

[86] Peng L, Lin L, Zhang J, Shi J, Liu S. Appl Catal A-Gen, 2011, 397: 259-265 CrossRef Google Scholar

[87] Saravanamurugan S, Riisager A. ChemCatChem, 2013, 5: 1754-1757 CrossRef Google Scholar

[88] Saravanamurugan S, Nguyen Van Buu O, Riisager A. ChemSusChem, 2011, 4: 723-726 CrossRef PubMed Google Scholar

[89] Chang CC, Wang Z, Dornath P, Je Cho H, Fan W. RSC Adv, 2012, 2: 10475-10477 CrossRef Google Scholar

[90] Dijkmans J, Gabriëls D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels BF. Green Chem, 2013, 15: 2777-2785 CrossRef Google Scholar

[91] Corma A, Domine ME, Nemeth L, Valencia S. J Am Chem Soc, 2002, 124: 3194-3195 CrossRef Google Scholar

[92] Roy S, Bakhmutsky K, Mahmoud E, Lobo RF, Gorte RJ. ACS Catal, 2013, 3: 573-580 CrossRef Google Scholar

[93] Lew CM, Rajabbeigi N, Tsapatsis M. Micropor Mesopor Mater, 2012, 153: 55-58 CrossRef Google Scholar

[94] Saravanamurugan S, Paniagua M, Melero JA, Riisager A. J Am Chem Soc, 2013, 135: 5246-5249 CrossRef PubMed Google Scholar

[95] Zhang L, Xi G, Chen Z, Qi Z, Wang X. Chem Eng J, 2017, 307: 877-883 CrossRef Google Scholar

[96] Gardner DW, Huo J, Hoff TC, Johnson RL, Shanks BH, Tessonnier JP. ACS Catal, 2015, 5: 4418-4422 CrossRef Google Scholar

[97] Otomo R, Yokoi T, Tatsumi T. ChemCatChem, 2015, 7: 4180-4187 CrossRef Google Scholar

[98] Faria J, Pilar Ruiz M, Resasco DE. ACS Catal, 2015, 5: 4761-4771 CrossRef Google Scholar

[99] Wang J, Ren J, Liu X, Xi J, Xia Q, Zu Y, Lu G, Wang Y. Green Chem, 2012, 14: 2506-2512 CrossRef Google Scholar

[100] Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K. Catal Sci Technol, 2014, 4: 333-342 CrossRef Google Scholar

[101] Dutta A, Patra AK, Dutta S, Saha B, Bhaumik A. J Mater Chem, 2012, 22: 14094-14100 CrossRef Google Scholar

[102] Atanda L, Mukundan S, Shrotri A, Ma Q, Beltramini J. ChemCatChem, 2015, 7: 781-790 CrossRef Google Scholar

[103] Dutta A, Gupta D, Patra AK, Saha B, Bhaumik A. ChemSusChem, 2014, 7: 925-933 CrossRef PubMed Google Scholar

[104] Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA. ChemSusChem, 2013, 6: 1697-1707 CrossRef PubMed Google Scholar

[105] Ordomsky VV, Sushkevich VL, Schouten JC, van der Schaaf J, Nijhuis TA. J Catal, 2013, 300: 37-46 CrossRef Google Scholar

[106] Osatiashtiani A, Lee AF, Granollers M, Brown DR, Olivi L, Morales G, Melero JA, Wilson K. ACS Catal, 2015, 5: 4345-4352 CrossRef Google Scholar

[107] Atanda L, Silahua A, Mukundan S, Shrotri A, Torres-Torres G, Beltramini J. RSC Adv, 2015, 5: 80346-80352 CrossRef Google Scholar

[108] Nakajima K, Baba Y, Noma R, Kitano M, Kondo NJ, Hayashi S, Hara M. J Am Chem Soc, 2011, 133: 4224-4227 CrossRef PubMed Google Scholar

[109] Yang F, Liu Q, Bai X, Du Y. Bioresource Tech, 2011, 102: 3424-3429 CrossRef PubMed Google Scholar

[110] Zhang Y, Wang J, Ren J, Liu X, Li X, Xia Y, Lu G, Wang Y. Catal Sci Technol, 2012, 2: 2485-2491 CrossRef Google Scholar

[111] Zhang Y, Wang J, Li X, Liu X, Xia Y, Hu B, Lu G, Wang Y. Fuel, 2015, 139: 301-307 CrossRef Google Scholar

[112] Kreissl HT, Nakagawa K, Peng YK, Koito Y, Zheng J, Tsang SCE. J Catal, 2016, 338: 329-339 CrossRef Google Scholar

[113] Jiao H, Zhao X, Lv C, Wang Y, Yang D, Li Z, Yao X. Sci Rep, 2016, 6: 34068 CrossRef PubMed ADS Google Scholar

[114] Fan W, Zhang Q, Deng W, Wang Y. Chem Mater, 2013, 25: 3277-3287 CrossRef Google Scholar

[115] Yue C, Li G, Pidko EA, Wiesfeld JJ, Rigutto M, Hensen EJM. ChemSusChem, 2016, 9: 2421-2429 CrossRef PubMed Google Scholar

[116] Yang F, Liu Q, Yue M, Bai X, Du Y. Chem Commun, 2011, 47: 4469-4471 CrossRef PubMed Google Scholar

[117] Jiménez-Morales I, Teckchandani-Ortiz A, Santamaría-González J, Maireles-Torres P, Jiménez-López A. Appl Catal B-Environ, 2014, 144: 22-28 CrossRef Google Scholar

[118] Zhang Y, Degirmenci V, Li C, Hensen EJM. ChemSusChem, 2011, 4: 59-64 CrossRef PubMed Google Scholar

[119] Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X. Biomass Bioenergy, 2011, 35: 2659-2665 CrossRef Google Scholar

[120] Su Y, Chang G, Zhang Z, Xing H, Su B, Yang Q, Ren Q, Yang Y, Bao Z. AIChE J, 2016, 62: 4403-4417 CrossRef Google Scholar

[121] Zhang Z, Du B, Zhang LJ, Da YX, Quan ZJ, Yang LJ, Wang XC. RSC Adv, 2013, 3: 9201-9205 CrossRef Google Scholar

[122] Cao X, Teong SP, Wu D, Yi G, Su H, Zhang Y. Green Chem, 2015, 17: 2348-2352 CrossRef Google Scholar

[123] Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A. Chem Eur J, 2011, 17: 1456-1464 CrossRef PubMed Google Scholar

[124] Wang HY, Liu SY, Zhao YL, Zhang HC, Wang JJ. ACS Sustain Chem Eng, 2016, doi: 10.1021/acssuschemeng.1026b01652. Google Scholar

[125] Zhou J, Huang T, Zhao Y, Xia Z, Xu Z, Jia S, Wang J, Zhang ZC. Ind Eng Chem Res, 2015, 54: 7977-7983 CrossRef Google Scholar

[126] Liu W, Richard Zheng F, Li J, Cooper A. AIChE J, 2014, 60: 300-314 CrossRef Google Scholar

[127] Su Y, Brown HM, Huang X, Zhou X, Amonette JE, Zhang ZC. Appl Catal A-Gen, 2009, 361: 117-122 CrossRef Google Scholar

[128] Shuai L, Luterbacher J. ChemSusChem, 2016, 9: 133-155 CrossRef PubMed Google Scholar

[129] Simeonov  SP, Coelho  JAS, Afonso  CAM. ChemSusChem, 2012, 5: 1388-1391 CrossRef PubMed Google Scholar

[130] Alonso DM, Wettstein SG, Dumesic JA. Green Chem, 2013, 15: 584-595 CrossRef Google Scholar

[131] Azadi P, Carrasquillo-Flores R, Pagán-Torres YJ, Gürbüz EI, Farnood R, Dumesic JA. Green Chem, 2012, 14: 1573-1576 CrossRef Google Scholar

[132] Alonso DM, Wettstein SG, Bond JQ, Root TW, Dumesic JA. ChemSusChem, 2011, 4: 1078-1081 CrossRef PubMed Google Scholar

[133] Román-Leshkov Y, Chheda JN, Dumesic JA. Science, 2006, 312: 1933-1937 CrossRef PubMed ADS Google Scholar

[134] Wrigstedt P, Keskiväli J, Repo T. RSC Adv, 2016, 6: 18973-18979 CrossRef Google Scholar

[135] Mohammad S, Held C, Altuntepe E, Köse T, Sadowski G. J Phys Chem B, 2016, 120: 3797-3808 CrossRef PubMed Google Scholar

[136] Mohammad S, Held C, Altuntepe E, Köse T, Gerlach T, Smirnova I, Sadowski G. Fluid Phase Equilibr, 2016, 416: 83-93 CrossRef Google Scholar

[137] Wrigstedt P, Keskiväli J, Leskelä M, Repo T. ChemCatChem, 2015, 7: 501-507 CrossRef Google Scholar

[138] Teong SP, Yi G, Zeng H, Zhang Y. Green Chem, 2015, 17: 3751-3755 CrossRef Google Scholar

  • Figure 1

    (a) An optimized structure of complex from coordination of glucose and chromium(II) chloride; (b) an scheme of the hydrogen shift in glucose isomerization; (c) formation of binuclear chromium complexes with the deprotonated sugar intermediates; (d) catalytic cycle for glucose isomerization [27] (color online).

  • Scheme 1

    An schematic representation of transformation of glucose to HMF via isomerization of glucose to fructose and subsequent fructose dehydration to HMF [32].

  • Scheme 2

    Proposed metal halide interaction with glucose in [EMIM]Cl. CrCl2 leads to the isomerization of glucopyranose to fructofuranose, followed by dehydration to HMF [35].

  • Figure 2

    A computed enthalpy profile for glucose-fructose isomerization catalyzed by open site of Sn-Beta [14] (color online).

  • Figure 3

    Conversion of glucose into HMF catalyzed by CrCl3 and HCl in water or THF-water biphasic system [72] (color online).

  • Scheme 3

    Proposed mechanisms for the chromium(III)-catalyzed conversion of an aldose into HMF. Hydrogens replaced with deuteriums in isotopic labelling studies are depicted in boldface type [65].

  • Scheme 4

    Immobilization of [PMIM]Cl on SBA-15 and subsequent introduction of CrCl2 [71].

  • Figure 4

    Plausible reaction mechanism for glucose isomerization to fructose followed by dehydration to HMF on Sn-Mont catalyst [99] (color online).

  • Figure 5

    Batch process for production of HMF from fructose with simulated countercurrent extraction and evaporation steps. The aqueous phase (white) was represented in the bottom half of the batch reactor, and the organic phase (gray) was represented in the top half of the batch reactor [133].

  • Scheme 5

    Glucose isomerization mechanism by way of intramolecular hydride shift [39] (color online).

  • Scheme 6

    Reaction pathways for glucose conversion over Sn-Beta and SnO2/Si-Beta in water and methanol solvents [40] (color online).

  • Table 1   Isomerization of glucose to fructose over enzyme, base, and soluble Lewis acid catalyst followed by dehydration of the generated fructose into HMF

    Entry

    Catalyst a)

    Media b)

    Conditions c)

    HMF yield (%)

    Ref.

    1

    Glucose isomerase+0.35 M HCl

    1-Butanol/H2O (3:2, v/v)

    70 °C, 8 h+190 °C, 45 min

    63.3

    [46]

    2

    Glucose isomerase+Oxalic acid (pH 1)

    2-MTHF/seawater

    60 °C, 40 min+140 °C, 1 h

    45

    [47]

    3

    Glucose isomerase+HNO3

    TEAB/H2O (72:28, w/w)

    60 °C, OT+ 80 °C, 25 min

    87

    [48]

    4

    TiO2

    Hot compressed water

    200 °C, 5 min

    18.6

    [55]

    5

    HT+Amberlyst-15

    DMF

    80 °C, 9 h

    42.2

    [57]

    6

    CrCl2

    [EMIM]Cl

    100 °C, 3 h

    68

    [35]

    7

    CrCl2

    [EMIM]Cl

    100 °C, 3 h

    60

    [66]

    8

    CrCl3·6H2O

    [EMIM]Cl

    100 °C, 3 h

    72

    [66]

    9

    Cr0-NPs

    [EMIM]Cl

    120 °C, 6 h

    49

    [67]

    10

    NHC-Cr2+

    [BMIM]Cl

    100 °C, 6 h

    81

    [68]

    11

    CrCl3

    [BMIM]Cl

    140 °C, 30 s

    71

    [69]

    12

    Cr(III)-HAP

    [BMIM]Cl

    150 °C, 2.5 min

    40

    [70]

    13

    CrCl2-Im-SBA-15

    H2O:DMSO/2-butanol:MIBK

    150 °C, 3 h

    35

    [71]

    14

    CrCl3+HCl

    THF/H2O

    140 °C, 3 h

    59

    [72]

    15

    AlCl3+HCl

    2-sec-butylphenol/H2O

    170 °C, 40 min

    62

    [73]

    16

    ScCl3

    [BMIM]Cl

    110 °C, 2 min

    73.4 d)

    [74]

    17

    ZnCl2+HCl

    MIBK/H2O

    120 °C, 4 h

    40

    [75]

    18

    GeCl4

    [BMIM]Cl

    120 °C, 30 min

    48.4

    [76]

    19

    HfCl4

    [BMIM]Cl

    100 °C, 4 h

    34.5

    [77]

    20

    SnCl4

    [EMIM]BF4

    100 °C, 3 h

    61

    [78]

    HT: hydrotalcites, Cr0-NPs: zero-valent chromium nanoparticles, NHC-Cr2+: N-heterocyclic carbene ligand chromium(II), Cr(III)-HAP: hydroxyapatite supported chromium(III) chloride; b) 2-MTHF: 2-methyltertrahydrofuran, TEAB: tetraethylammonium bromide, DMF: N,N-dimethylformamide, MIBK: methylisobutylketone, THF: tetrahydrofuran; c) OT: overnight; d) sucrose was used as substrate with microwave heating at 400 W.

  • Table 2   Isomerization of glucose to fructose over heterogeneous catalysts followed by dehydration of the generated fructose into HMF

    Entry

    Catalyst a)

    Media b)

    Conditions

    HMF yield (%)

    Ref.

    1

    Sn-Beta+HCl

    THF/H2O

    180 °C, 70 min

    55

    [38]

    2

    Sn-Mont

    THF/H2O

    160 °C, 3 h

    59.3

    [99]

    3

    SO4/ZrO2

    H2O

    120 °C, 6 h

    4.6

    [100]

    4

    MTiP-b

    DMA-LiCl

    140 °C, 5 min

    22

    [101]

    5

    LPSn-1

    MIBK/H2O

    150 °C, 20 min

    50

    [103]

    6

    ZrPO

    MIBK/H2O

    165 °C, 8 h

    25

    [104]

    7

    H3PO4/Nb2O5·nH2O

    H2O

    120 °C, 3 h

    47.8

    [108]

    8

    NA-p

    2-butanol/H2O

    160 °C, 110 min

    49

    [109]

    9

    TA-p

    2-butanol/H2O

    160 °C, 140 min

    58

    [116]

    10

    MTP

    MIBK/H2O

    170 °C, 1 h

    32.8

    [117]

    11

    PTA/MIL-101

    [EMIM]Cl

    100 °C, 3 h

    2

    [118]

    12

    Ag3PW12O40

    MIBK/H2O

    130 °C, 4 h

    76.3

    [119]

    13

    PEG-OSO3H

    DMSO/LiCl

    120 °C, 1.5 h

    78

    [121]

    14

    PS-PEG-OSO3H

    DMSO/LiCl

    120 °C, 1 h

    86

    [121]

    15

    Boric acid

    [EMIM]Cl

    120 °C, 3 h

    41

    [123]

    MTiP-1: macro/mesoporous titanium phosphate, LPSn-1: large-pore mesoporous tin phosphate, NA-p: H3PO4-treated Nb2O5·nH2O, TA-p: H3PO4-treated hydrated tantalum oxide, MTP: mesoporous tantalum phosphate, PTA/MIL-101: phosphotungstic acid (PTA) was encapsulated into MIL-101 material, PEG-OSO3H: polyethylene glycol (PEG)-bound sulfonic acid, PS-PEG-OSO3H: polystyrene-poly (ethylene glycol) (PS-PEG) resin-supported sulfonic acid; b) THF: tetrahydrofuran, DMA: N,N-dimethylacetamide.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1