logo

SCIENCE CHINA Chemistry, Volume 60, Issue 5: 656-662(2017) https://doi.org/10.1007/s11426-017-9020-2

Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy

More info
  • ReceivedJan 2, 2017
  • AcceptedFeb 15, 2017
  • PublishedApr 7, 2017

Abstract

Graphene layers are often exposed to gaseous environments in their synthesis and application processes, and interactions of graphene surfaces with molecules particularly H2 and O2 are of great importance in their physico-chemical properties. In this work, etching of graphene overlayers on Pt(111) in H2 and O2 atmospheres were investigated by in-situ low energy electron microscopy. Significant graphene etching was observed in 10−5 Torr H2 above 1023 K, which occurs simultaneously at graphene island edges and interiors with a determined reaction barrier at 5.7 eV. The similar etching phenomena were found in 10−7 Torr O2 above 973 K, while only island edges were reacted between 823 and 923 K. We suggest that etching of graphene edges is facilitated by Pt-aided hydrogenation or oxidation of edge carbon atoms while intercalation-etching is attributed to etching at the interiors at high temperatures. The different findings with etching in O2 and H2 depend on competitive adsorption, desorption, and diffusion processes of O and H atoms on Pt surface, as well as intercalation at the graphene/Pt interface.


Funded by

National Natural Science Foundation of China(21373208,91545204,21321002)

Ministry of Science and Technology of China(2016YFA0200200,2013CB834603,2013CB933100)

Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020200)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21373208, 21688102, 91545204, 21621063), Ministry of Science and Technology of China (2016YFA0200200, 2013CB834603, 2013CB933100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020200).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Gao L, Ren W, Zhao J, Ma LP, Chen Z, Cheng HM. Appl Phys Lett, 2010, 97: 183109 CrossRef ADS Google Scholar

[2] Li J, Wang D, Wan LJ. Chem Commun, 2015, 51: 15486-15489 CrossRef PubMed Google Scholar

[3] Patchkovskii S, Tse JS, Yurchenko SN, Zhechkov L, Heine T, Seifert G. Proc Natl Acad Sci USA, 2005, 102: 10439-10444 CrossRef PubMed ADS Google Scholar

[4] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett, 2009, 9: 1752-1758 CrossRef PubMed ADS Google Scholar

[5] Fu Q, Bao X. Chem Soc Rev, 2017, : doi: 10.1039/c6cs00424e CrossRef PubMed Google Scholar

[6] Hu BS, Wei ZD, Ago H, Jin Y, Xia MR, Luo ZT, Pan QJ, Liu YL. Sci China Chem, 2014, 57: 895-901 CrossRef Google Scholar

[7] Liu N, Zhang J, Qiu Y, Yang J, Hu PA. Sci China Chem, 2016, 59: 707-712 CrossRef Google Scholar

[8] Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS. ACS Nano, 2011, 5: 1321-1327 CrossRef PubMed Google Scholar

[9] Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Nat Nanotechnol, 2008, 3: 101-105 CrossRef PubMed ADS Google Scholar

[10] Gong C, Floresca HC, Hinojos D, McDonnell S, Qin X, Hao Y, Jandhyala S, Mordi G, Kim J, Colombo L, Ruoff RS, Kim MJ, Cho K, Wallace RM, Chabal YJ. J Phys Chem C, 2013, 117: 23000-23008 CrossRef Google Scholar

[11] Singh Raman RK, Chakraborty Banerjee P, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan PM, Majumder M. Carbon, 2012, 50: 4040-4045 CrossRef Google Scholar

[12] Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Nat Mater, 2007, 6: 652-655 CrossRef PubMed ADS Google Scholar

[13] Ng ML, Balog R, Hornekær L, Preobrajenski AB, Vinogradov NA, Mårtensson N, Schulte K. J Phys Chem C, 2010, 114: 18559-18565 CrossRef Google Scholar

[14] McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA. Chem Mater, 2007, 19: 4396-4404 CrossRef Google Scholar

[15] Panchokarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao C NR. Adv Mater, 2009, 21: 4726–4730. Google Scholar

[16] Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin HJ, Choi JY, Pribat D, Lee YH. Nano Lett, 2011, 11: 4144-4148 CrossRef PubMed Google Scholar

[17] Liang T, He G, Huang G, Kong Y, Fu W, Chen H, Wang Q, Iwai H, Fujita D, Liu Y, Xu M. Adv Mater, 2015, 27: 6404-6410 CrossRef PubMed Google Scholar

[18] Hu B, Jin Y, Guan D, Luo Z, Shang B, Fang Q, Ruan H. J Phys Chem C, 2015, 119: 24124-24131 CrossRef Google Scholar

[19] Guo W, Wu B, Li Y, Wang L, Chen J, Chen B, Zhang Z, Peng L, Wang S, Liu Y. ACS Nano, 2015, 9: 5792-5798 CrossRef Google Scholar

[20] Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. J Am Chem Soc, 2013, 135: 6431-6434 CrossRef PubMed Google Scholar

[21] Gottardi S, Müller K, Bignardi L, Moreno-López JC, Pham TA, Ivashenko O, Yablonskikh M, Barinov A, Björk J, Rudolf P, Stöhr M. Nano Lett, 2015, 15: 917-922 CrossRef PubMed ADS Google Scholar

[22] Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K. Nat Nanotech, 2016, 11: 930-935 CrossRef PubMed ADS Google Scholar

[23] Zhang X, Wang L, Xin J, Yakobson BI, Ding F. J Am Chem Soc, 2014, 136: 3040-3047 CrossRef PubMed Google Scholar

[24] Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. ACS Nano, 2011, 5: 6069-6076 CrossRef PubMed Google Scholar

[25] Wei M, Fu Q, Wu H, Dong A, Bao X. Top Catal, 2016, 59: 543-549 CrossRef Google Scholar

[26] Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang YW, Kim P, Hone J, Colombo L, Ruoff RS. Science, 2013, 342: 720-723 CrossRef PubMed ADS Google Scholar

[27] Marchon B, Carrazza J, Heinemann H, Somorjai GA. Carbon, 1988, 26: 507-514 CrossRef Google Scholar

[28] Sun T, Fabris S, Baroni S. J Phys Chem C, 2011, 115: 4730-4737 CrossRef Google Scholar

[29] Sutter P, Sadowski JT, Sutter EA. J Am Chem Soc, 2010, 132: 8175-8179 CrossRef PubMed Google Scholar

[30] Zhang Y, Wei M, Fu Q, Bao X. Sci Bull, 2015, 60: 1572-1579 CrossRef Google Scholar

[31] Starodub E, Bartelt NC, McCarty KF. J Phys Chem C, 2010, 114: 5134-5140 CrossRef Google Scholar

[32] Sutter P, Sadowski JT, Sutter E. Phys Rev B, 2009, 80: 245411 CrossRef ADS Google Scholar

[33] Iwasaki T, Zakharov AA, Eelbo T, Waśniowska M, Wiesendanger R, Smet JH, Starke U. Surf Sci, 2014, 625: 44-49 CrossRef ADS Google Scholar

[34] Gould RK. J Chem Phys, 1975, 63: 1825-1836 CrossRef ADS Google Scholar

[35] Grånäs E, Gerber T, Schröder UA, Schulte K, Andersen JN, Michely T, Knudsen J. Surface Sci, 2016, 651: 57-61 CrossRef ADS Google Scholar

[36] Cui Y, Fu Q, Zhang H, Tan D, Bao X. J Phys Chem C, 2009, 113: 20365-20370 CrossRef Google Scholar

[37] Grånäs E, Knudsen J, Schröder UA, Gerber T, Busse C, Arman MA, Schulte K, Andersen JN, Michely T. ACS Nano, 2012, 6: 9951-9963 CrossRef PubMed Google Scholar

[38] Johánek V, Cushing GW, Navin JK, Harrison I. Surface Sci, 2016, 644: 165-169 CrossRef ADS Google Scholar

[39] Weaver JF, Chen JJ, Gerrard AL. Surface Sci, 2005, 592: 83-103 CrossRef ADS Google Scholar

[40] Norton PR, Davies JA, Jackman TE. Surface Sci, 1982, 121: 103-110 CrossRef ADS Google Scholar

[41] Brugger T, Ma H, Iannuzzi M, Berner S, Winkler A, Hutter J, Osterwalder J, Greber T. Angew Chem Int Ed, 2010, 49: 6120-6124 CrossRef PubMed Google Scholar

[42] Balooch M, Olander DR. J Chem Phys, 1975, 63: 4772-4786 CrossRef ADS Google Scholar

[43] Sutter P, Albrecht P, Tong X, Sutter E. J Phys Chem C, 2013, 117: 6320-6324 CrossRef Google Scholar

[44] Larciprete R, Ulstrup S, Lacovig P, Dalmiglio M, Bianchi M, Mazzola F, Hornekær L, Orlando F, Baraldi A, Hofmann P, Lizzit S. ACS Nano, 2012, 6: 9551-9558 CrossRef PubMed Google Scholar

[45] Schröder UA, Grånäs E, Gerber T, Arman MA, Martínez-Galera AJ, Schulte K, Andersen JN, Knudsen J, Michely T. Carbon, 2016, 96: 320-331 CrossRef Google Scholar

[46] Enderlein C, Kim YS, Bostwick A, Rotenberg E, Horn K. New J Phys, 2010, 12: 033014 CrossRef ADS Google Scholar

[47] Preobrajenski AB, Ng ML, Vinogradov AS, Mårtensson N. Phys Rev B, 2008, 78: 073401 CrossRef ADS Google Scholar

[48] Vanin M, Mortensen JJ, Kelkkanen AK, Garcia-Lastra JM, Thygesen KS, Jacobsen KW. Phys Rev B, 2010, 81: 081408 CrossRef ADS arXiv Google Scholar

  • Figure 1

    Snapshots of in-situ LEEM videos acquired from graphene etching in 3×10−5 Torr H2 at 1123 K (a–d) and 1048 K (e–h), respectively, with the labeled etching times. The scale bars are 6 μm. The videos can be found in the Supporting Information online (movie-1 and movie-2 in Figure S2).

  • Scheme 1

    The schematic diagram of graphene etching process by O2 (or H2). Process ① represents desorption of oxygen atoms (or hydrogen atoms) from the surface; Process ② stands for diffusion of oxygen atoms (or hydrogen atoms) to island edges and reaction with edge carbon atoms; Process ③ represents intercalation of oxygen atoms (or hydrogen atoms) under graphene islands and further reaction with interior carbon atoms (color online).

  • Figure 2

    (a) Arrhenius plot of graphene etching rate with the etching temperature in 3×10−5 Torr H2 at the temperature between 1023 and 1123 K; (b) the dependence of etching hole density with the etching temperature from 1023 to 1123 K (color onine).

  • Figure 3

    LEEM images of the as-prepared full graphene overlayers on Pt(111) (a) and the surface exposed to 3×10−5 Torr H2 at 1073 K for 200 s (b). The field of view is 20 μm. (c) I-V curves of the surface before and after the exposure in H2 (color online).

  • Figure 4

    Snapshots of in-situ LEEM videos acquired from graphene etching in 1×10−7 Torr O2 at 1073 K (a–d) and 923 K (e–h), respectively, with the labeled etching times. The scale bars in (a–d) are 7.5 μm and those in (e–h) are 5.3 μm. The videos can be found in the Figure S3.

  • Figure 5

    LEEM images of the as-prepared full graphene overlayers on Pt(111) (a) and the surface exposed to 1×10−7 Torr O2 at 1073 K for 230 s (b). The field of view is 20 μm. (c) I-V curves of the surface before and after the exposure in O2 (color online).

  • Figure 6

    Shrinking rates of graphene island areas in 1×10−7 Torr O2 at different temperatures. The two lines are fitted from the data in the high temperature regime and low temperature regime, respectively (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1