logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 927-933(2017) https://doi.org/10.1007/s11426-017-9024-8

N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes

More info
  • ReceivedJan 3, 2017
  • AcceptedFeb 20, 2017
  • PublishedApr 27, 2017

Abstract

N-methyl-tetrahydroquinolines (MTHQs) are a kind of very useful chemicals, which can be obtained from N-methylation of amines. However, the methylation of quinolines which is a kind of highly unsaturated nitrogen-containing heterocyclic aromatic compounds has not been reported. In this work, we report the first work for the synthesis of MTHQs by methylation of quinolines using CO2 and H2. It was found that Ru(acac)3-triphos [triphos: 1,1,1-tris(diphenylphosphinomethyl)ethanl] complex was very active and selective for the N-methylation reaction of quinolines, and the yield of the desired product could reach 99%.


Funded by

National Natural Science Foundation of China(21603235,21373234,21533011)

Chinese Academy of Sciences(QYZDY-SSW-SLH013)

the Recruitment Program of Global Youth Experts of China.


Acknowledgment

This work was supported by National Natural Science Foundation of China (21603235, 21373234, 21533011), Chinese Academy of Sciences (QYZDY-SSW-SLH013) and the Recruitment Program of Global Youth Experts of China.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Páez DE, Andriollo A, Morfes G, Fang M, Sánchez-Delgado RA, Deepa G, Sankaranarayanan TM, Shanthi K, Viswanathan B, Schmitter JM, Ignatiadis I, Arpino PJ. Catal Today, 2015, 247: 139-146 CrossRef Google Scholar

[2] Sridharan V, Suryavanshi PA, Menéndez JC, Jacquemond-Collet I, Hannedouche S, Fabre N, Fouraste I, Moulis C, O’Byrne A, Evans P, Theeraladanon C, Arisawa M, Nakagawa M, Nishida A. Chem Rev, 2011, 111: 7157-7259 CrossRef PubMed Google Scholar

[3] Wang Y, Liu Y, Zhang D, Wei H, Shi M, Wang F, Pappoppula M, Cardoso  FSP, Garrett BO, Aponick A, Muñoz GD, Dudley GB, Ye KY, He H, Liu WB, Dai LX, Helmchen G, You SL, Bentley SA, Davies SG, Lee JA, Roberts PM, Thomson JE, Kothandaraman P, Foo SJ, Chan PWH, Lei P, Xu Y, Du J, Yang XL, Yuan HZ, Xu GF, Ling Y, Yang PY, Zhou YG, Taylor LL, Goldberg FW, Hii KKM. Angew Chem Int Ed, 2016, 55: 3776-3780 CrossRef PubMed Google Scholar

[4] Chen F, Surkus AE, He L, Pohl MM, Radnik J, Topf C, Junge K, Beller M, Zhang Z, Du H, Karakulina A, Gopakumar A, Akçok , Roulier BL, LaGrange T, Katsyuba SA, Das S, Dyson PJ, Ren D, He L, Yu L, Ding RS, Liu YM, Cao Y, He HY, Fan KN, Wang WB, Lu SM, Yang PY, Han XW, Zhou YG, Tu XF, Gong LZ. J Am Chem Soc, 2015, 137: 11718-11724 CrossRef PubMed Google Scholar

[5] Tummatorn J, Muñoz GD, Dudley GB, Sorribes I, Junge K, Beller M, Dang TT, Ramalingam B, Seayad AM. Tetrahedron Lett, 2013, 54: 1312-1314 CrossRef Google Scholar

[6] Abarca B, Adam R, Ballesteros R. Org Biomol Chem, 2012, 10: 1826-1833 CrossRef PubMed Google Scholar

[7] Babu TH, Shanthi G, Perumal PT. Tetrahedron Lett, 2009, 50: 2881-2884 CrossRef Google Scholar

[8] Qian Q, Zhang J, Cui M, Han B, He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B, Wang MY, Ma R, He LN, Börjesson M, Moragas T, Martin R, Zhang S, Li X, He L, He M, Sun Y, Han B, Beydoun K, Ghattas G, Thenert K, Klankermayer J, Leitner W, Das S, Bobbink FD, Laurenczy G, Dyson PJ, Zhu Q, Ma J, Kang X, Sun X, Hu J, Yang G, Han B. Nat Commun, 2016, 7: 11481 CrossRef PubMed ADS Google Scholar

[9] Santoro O, Lazreg F, Minenkov Y, Cavallo L, Cazin CSJ, Das S, Bobbink FD, Bulut S, Soudani M, Dyson PJ, Blondiaux E, Pouessel J, Cantat T, Zheng J, Darcel C, Sortais JB. Dalton Trans, 2015, 44: 18138-18144 CrossRef PubMed Google Scholar

[10] Tlili A, Frogneux X, Blondiaux E, Cantat T. Angew Chem Int Ed, 2014, 53: 2543-2545 CrossRef PubMed Google Scholar

[11] Cui X, Dai X, Zhang Y, Deng Y, Shi F. Chem Sci, 2014, 5: 649-655 CrossRef Google Scholar

[12] Cui X, Zhang Y, Deng Y, Shi F. Chem Commun, 2014, 50: 13521-13524 CrossRef PubMed Google Scholar

[13] Kon K, Siddiki SMAH, Onodera W, Shimizu K. Chem Eur J, 2014, 20: 6264-6267 CrossRef PubMed Google Scholar

[14] Du XL, Tang G, Bao HL, Jiang Z, Zhong XH, Su DS, Wang JQ. ChemSusChem, 2015, 8: 3489-3496 CrossRef PubMed Google Scholar

[15] Li Y, Sorribes I, Yan T, Junge K, Beller M. Angew Chem Int Ed, 2013, 52: 12156-12160 CrossRef PubMed Google Scholar

[16] Cabrero-Antonino JR, Alberico E, Junge K, Junge H, Beller M, Coetzee J, Dodds DL, Klankermayer J, Brosinski S, Leitner W, Slawin AMZ, Cole-Hamilton DJ. Chem Sci, 2016, 7: 3432-3442 CrossRef Google Scholar

[17] Cui X, Li Y, Topf C, Junge K, Beller M, Furst MRL, Goff RL, Quinzler D, Mecking S, Botting CH, Cole-Hamilton DJ, Geilen FMA, Engendahl B, Hӧlscher M, Klankermayer J, Leitner W. Angew Chem Int Ed, 2015, 54: 10596-10599 CrossRef PubMed Google Scholar

[18] Sorribes I, Cabrero-Antonino JR, Vicent C, Junge K, Beller M. J Am Chem Soc, 2015, 137: 13580-13587 CrossRef PubMed Google Scholar

[19] Wesselbaum S, Moha V, Meuresch M, Brosinski S, Thenert KM, Kothe J, Stein T, Englert U, Hölscher M, Klankermayer J, Leitner W. Chem Sci, 2015, 6: 693-704 CrossRef Google Scholar

  • Figure 1

    Dependence of reaction time on the catalytic performances of N-methylation of quinoline and CO2 with H2. Reaction conditions were similar to that of Table 1, entry 1, except for the reaction time.

  • Scheme 1

    Some antimalarial activity of naturally occurring alkaloids with the structure of N-methyl-1,2,3,4-tetrahydroquinoline.

  • Scheme 2

    Synthesis of N-methyl-1,2,3,4-tetrahydroquinolines.

  • Table 1   One-pot hydrogenation and -methylation of quinoline and CO with H over various catalysts

    Entry

    Cat.

    L

    Conv. (%)

    Yield (%) b)

    2a

    3a

    4a

    Others c)

    1

    Ru(acac)3

    L9

    100

    0

    0

    99

    1

    2

    RuCl3

    L9

    60

    44

    0

    3

    14

    3

    RuBr3

    L9

    82

    46

    32

    3

    1

    4

    RuI3

    L9

    94

    73

    16

    4

    2

    5

    Ru3(CO)12

    L9

    98

    86

    12

    0

    0

    6

    Pd(OAc)2

    L9

    100

    84

    15

    0

    1

    7

    PdCl2

    L9

    100

    99

    0

    0

    1

    8

    H2PtCl6

    L9

    99

    98

    0

    0

    0

    9

    Ru(acac)3

    L1

    96

    95

    0

    0

    1

    10

    Ru(acac)3

    L2

    95

    95

    0

    0

    0

    11

    Ru(acac)3

    L3

    93

    89

    0

    0

    4

    12 d)

    Ru(acac)3

    L4

    93

    91

    0

    0

    2

    13

    Ru(acac)3

    L5

    100

    86

    0

    0

    14

    14

    Ru(acac)3

    L6

    58

    58

    0

    0

    0

    15

    Ru(acac)3

    L7

    100

    73

    19

    3

    6

    16

    Ru(acac)3

    L8

    96

    74

    14

    5

    3

    17

    Ru(acac)3

    L10

    97

    63

    9

    22

    3

    18 e) f)

    Ru(acac)3

    L9

    78

    78

    0

    0

    0

    19 e)

    Ru(acac)3

    L9

    99

    99

    0

    0

    0

    20 f)

    Ru(acac)3

    L9

    83

    83

    0

    0

    0

    21 f) g)

    Ru(acac)3

    L9

    0

    0

    0

    0

    Reaction conditions: quinoline 1.0 mmol, Ru(acac)3 0.5 mol%, triphos 1.0%, MSA 10 mol%, THF 2 mL, 160 °C, 16 h, CO2 2 MPa, H2 8 MPa; b) GC yield; c) others contained mainly decahydroquinoline and 5,6,7,8-tetrahydroquinoline etc; d) water (2 mL) as solvent; e) without CO2; f) without MSA; g) 1.0 mmol of 2a was the substrate.

  • Table 2   Optimization of reaction conditions on the coupling of selective hydrogenation and -methylation of quinolone

    Entry

    T (°C)

    P CO2 /PH2 (MPa)

    Sol.

    Conv. (%)

    Yield (%) b)

    2a

    3a

    4a

    Others c)

    1

    120

    2/8

    THF

    96

    39

    0

    57

    0

    2

    140

    2/8

    THF

    97

    31

    0

    65

    0

    3

    180

    2/8

    THF

    98

    48

    0

    50

    0

    4

    160

    0/8

    THF

    91

    92

    0

    0

    0

    5

    160

    0.5/8

    THF

    90

    28

    0

    62

    1

    6

    160

    1/8

    THF

    100

    11

    1

    89

    0

    7

    160

    2/0

    THF

    0

    0

    0

    0

    0

    8

    160

    2/4

    THF

    99

    19

    5

    74

    0

    9

    160

    2/6

    THF

    99

    7

    1

    91

    0

    10

    160

    2/8

    cy

    98

    42

    0

    56

    0

    11

    160

    2/8

    Tol d)

    96

    43

    1

    53

    0

    12

    160

    2/8

    1,4-dioxane

    90

    79

    0

    11

    0

    13

    160

    2/8

    TMB e)

    97

    22

    1

    75

    0

    Reaction conditions: quinoline 1.0 mmol, Ru(acac)3 0.5 mol%, triphos 1.0%, MSA 10 mol%, 16 h; b) GC yield; c) others contained mainly decahydroquinoline and 5,6,7,8-tetrahydroquinoline etc.; d) toluene; e) 1,2,4-trimethylbenzene.

  • Table 3   Direct -methylation of quinoline with diverse C1 sources catalyzed by Ru catalyst

    Entry

    C1

    Conv. (%)

    Yield (%) b)

    2a

    3a

    4a

    Others c)

    1

    CO d)

    63

    63

    0

    0

    0

    2

    (HCHO)n

    95

    78

    0

    17

    0

    3

    HCOOH

    99

    10

    0

    80

    9

    4

    CH3OH

    99

    89

    0

    10

    0

    Reaction conditions were same that entry 1 in Table 1, except for the addition of (HCHO)n, HCOOH and CH3OH as C1 sources (3 eq.); b) GC yield; c) others contained mainly decahydroquinoline and 5,6,7,8-tetrahydroquinoline, etc.; d) 2 MPa of CO was added.

  • Table 4   Ru-triphos catalyzed direct -methylation of quinolines and CO with H

    Entry

    Substrate

    Product

    Yield (%) b)

    1

    1b

    4b

    90

    2

    1c

    4c

    89

    3

    1d

    4d

    92

    4 c)

    1e

    4e

    88

    5 c)

    1f

    4f

    89

    6 c)

    1g

    4g

    85

    7 d)

    1h

    4h

    86

    Reaction conditions are similar to that of entry 1 in Table 1; b) isolated yield; c) the reaction time was 36 h; d) Ru(acac)3 1.5 mol%, triphos 3.0 mol%.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1