logo

SCIENCE CHINA Chemistry, Volume 60, Issue 11: 1474-1480(2017) https://doi.org/10.1007/s11426-017-9036-0

Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode

More info
  • ReceivedJan 4, 2017
  • AcceptedMar 13, 2017
  • PublishedMay 9, 2017

Abstract

We recognize the stochastic collisions of dopamine contained phospholipid vesicle on carbon fiber nanoelectrode, extending the observation of discrete collision events on nanoelectrode to biologically relevant analytes. To decrease noise interference to the technique, the dimensions of nanoelectrode was systematically investigated and optimized. Scanning electron microscopy (SEM) further supported the comparable sizes of nanoelectrode and vesicles (~100 nm in diameter). Vesicles collision and rupture on the surface of nanoelectrode led to the dopamine release from vesicles, which could be electrochemically oxidized to dopamine-o-quinone and detected via voltammetry. The comparable size of the nanoelectrode with vesicles and fast voltammetry allowed differentiation of single collision events from the current magnitudes and peak widths in the electrochemical collision experiments, which shows the efficacy of the method to characterize vesicle samples. This work provides a foundation upon which quantitative sensor technology might be built for the detection of dopamine contained vesicles with high spatial and temporal resolution.


Funded by

National Natural Science Foundation of China(21422508,31470960)

and Chinese Academy of Sciences. Aldalbahi Ali acknowledges the support by the Deanship of Scientific Research

College of Science Research Center at King Saud University.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21422508, 31470960), and Chinese Academy of Sciences. Aldalbahi Ali acknowledges the support by the Deanship of Scientific Research, College of Science Research Center at King Saud University.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Angew Chem Int Ed, 2014, 53: 12456-12460 CrossRef PubMed Google Scholar

[2] Xu JQ, Liu YL, Wang Q, Duo HH, Zhang XW, Li YT, Huang WH. Angew Chem Int Ed, 2015, 54: 14402-14406 CrossRef PubMed Google Scholar

[3] Liu JT, Hu LS, Liu YL, Chen RS, Cheng Z, Chen SJ, Amatore C, Huang WH, Huo KF. Angew Chem Int Ed, 2014, 53: 2643-2647 CrossRef PubMed Google Scholar

[4] Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Angew Chem Int Ed, 2015, 54: 9313-9318 CrossRef PubMed Google Scholar

[5] Zhang Y, Cui Z, Kong H, Xia K, Pan L, Li J, Sun Y, Shi J, Wang L, Zhu Y, Fan C. Adv Mater, 2016, 28: 2699-2708 CrossRef PubMed Google Scholar

[6] Qian R, Cao Y, Long YT. Angew Chem, 2016, 128: 729-733 CrossRef Google Scholar

[7] Spring BQ, Bryan Sears R, Zheng LZ, Mai Z, Watanabe R, Sherwood ME, Schoenfeld DA, Pogue BW, Pereira SP, Villa E, Hasan T. Nat Nanotech, 2016, 11: 378-387 CrossRef PubMed ADS Google Scholar

[8] Dick JE, Hilterbrand AT, Boika A, Upton JW, Bard AJ. Proc Natl Acad Sci USA, 2015, 112: 5303-5308 CrossRef PubMed ADS Google Scholar

[9] Lebègue E, Anderson CM, Dick JE, Webb LJ, Bard AJ. Langmuir, 2015, 31: 11734-11739 CrossRef PubMed Google Scholar

[10] Dick JE, Renault C, Kim BK, Bard AJ. Angew Chem Int Ed, 2014, 53: 11859-11862 CrossRef PubMed Google Scholar

[11] Cans AS, Wittenberg N, Eves D, Karlsson R, Karlsson A, Orwar O, Ewing A. Anal Chem, 2003, 75: 4168-4175 CrossRef Google Scholar

[12] Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigström J, Cans AS, Ewing AG. J Am Chem Soc, 2015, 137: 4344-4346 CrossRef PubMed Google Scholar

[13] Li X, Majdi S, Dunevall J, Fathali H, Ewing AG. Angew Chem Int Ed, 2015, 54: 11978-11982 CrossRef PubMed Google Scholar

[14] Majdi S, Berglund EC, Dunevall J, Oleinick AI, Amatore C, Krantz DE, Ewing AG. Angew Chem Int Ed, 2015, 54: 13609-13612 CrossRef PubMed Google Scholar

[15] Omiatek DM, Dong Y, Heien ML, Ewing AG. ACS Chem Neurosci, 2010, 1: 234-245 CrossRef PubMed Google Scholar

[16] Cheng W, Compton RG. Angew Chem Int Ed, 2014, 53: 13928-13930 CrossRef PubMed Google Scholar

[17] Wang S, Cai X, Wang L, Li J, Li Q, Zuo X, Shi J, Huang Q, Fan C. Chem Sci, 2016, 7: 2722-2727 CrossRef Google Scholar

[18] Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Nat Protoc, 2016, 11: 1244-1263 CrossRef PubMed Google Scholar

[19] Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew Chem Int Ed, 2015, 54: 2151-2155 CrossRef PubMed Google Scholar

[20] Yao G, Li J, Chao J, Pei H, Liu H, Zhao Y, Shi J, Huang Q, Wang L, Huang W, Fan C. Angew Chem Int Ed, 2015, 54: 2966-2969 CrossRef PubMed Google Scholar

[21] Xu H, Wu HP, Fan CH, Li WX, Zhang ZZ, He L. Chin Sci Bull, 2004, 49: 2227-2231 CrossRef Google Scholar

[22] Li X, Chen N, Su Y, He Y, Yin M, Wei M, Wang L, Huang W, Fan C, Huang Q. Adv Healthcare Mater, 2014, 3: 354-359 CrossRef PubMed Google Scholar

[23] Wang L, Li X, Han Y, Wang T, Zhao Y, Ali A, El-Sayed NN, Shi J, Wang W, Fan C, Chen N. Sci China Chem, 2016, 59: 1486-1491 CrossRef Google Scholar

[24] Cui ZF, Zhu Y, Li XM, Kong HT, Chen N, Sun YH, Sheng C, Fan CH, Huang Q. Chin Sci Bull (Chin Ver), 2013, 58: 3521-3529 CrossRef Google Scholar

[25] Théry C, Ostrowski M, Segura E. Nat Rev Immunol, 2009, 9: 581-593 CrossRef PubMed Google Scholar

[26] Fusco G, Pape T, Stephens AD, Mahou P, Costa AR, Kaminski CF, Kaminski Schierle GS, Vendruscolo M, Veglia G, Dobson CM, De Simone A. Nat Commun, 2016, 7: 12563 CrossRef PubMed ADS Google Scholar

[27] Rey SA, Smith CA, Fowler MW, Crawford F, Burden JJ, Staras K. Nat Commun, 2015, 6: 8043 CrossRef PubMed ADS Google Scholar

[28] Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, Takahashi Y, López Córdoba A, Novak P, Shevchuck AI, Dougan JA, Kazarian SG, Gorelkin PV, Erofeev AS, Yaminsky IV, Unwin PR, Schuhmann W, Klenerman D, Rusakov DA, Sviderskaya EV, Korchev YE. ACS Nano, 2014, 8: 875-884 CrossRef PubMed Google Scholar

[29] Wang Y, Noël JM, Velmurugan J, Nogala W, Mirkin MV, Lu C, Guille Collignon M, Lemaître F, Amatore C. Proc Natl Acad Sci USA, 2012, 109: 11534-11539 CrossRef PubMed ADS Google Scholar

[30] Zhu D, Zuo XL, Fan CH. Sci Sin Chim, 2015, 45: 1214–1219. Google Scholar

[31] Liu Y, Li M, Zhang F, Zhu A, Shi G. Anal Chem, 2015, 87: 5531-5538 CrossRef PubMed Google Scholar

[32] Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto Jr EJ, Viveros OH. Proc Natl Acad Sci USA, 1991, 88: 10754-10758 CrossRef ADS Google Scholar

[33] Dernick G, Gong LW, Tabares L, Alvarez de Toledo G, Lindau M. Nat Meth, 2005, 2: 699-708 CrossRef PubMed Google Scholar

[34] Heinze J. Angew Chem Int Ed, 1993, 32: 1268-1288 CrossRef Google Scholar

[35] Mosharov EV, Sulzer D. Nat Meth, 2005, 2: 651-658 CrossRef PubMed Google Scholar

[36] Huang WH, Pang DW, Tong H, Wang ZL, Cheng JK. Anal Chem, 2001, 73: 1048-1052 CrossRef Google Scholar

[37] Wu WZ, Huang WH, Wang W, Wang ZL, Cheng JK, Xu T, Zhang RY, Chen Y, Liu J. J Am Chem Soc, 2005, 127: 8914-8915 CrossRef PubMed Google Scholar

[38] Strand AM, Venton BJ. Anal Chem, 2008, 80: 3708-3715 CrossRef PubMed Google Scholar

[39] Zhu D, Li M, Wang LH, Zuo XL. Nucl Sci Tech, 2015: 115–119. Google Scholar

[40] Adamala K, Engelhart AE, Kamat NP, Jin L, Szostak JW. Nat Protoc, 2015, 10: 927-938 CrossRef PubMed Google Scholar

[41] Jesorka A, Stepanyants N, Zhang H, Ortmen B, Hakonen B, Orwar O. Nat Protoc, 2011, 6: 791-805 CrossRef PubMed Google Scholar

[42] Yang Y, Wang J, Shigematsu H, Xu W, Shih WM, Rothman JE, Lin C. Nat Chem, 2016, 8: 476-483 CrossRef PubMed ADS Google Scholar

[43] Dave N, Liu J. ACS Nano, 2011, 5: 1304-1312 CrossRef PubMed Google Scholar

[44] Ge ZL, Pei H, Wang LH, Song SP, Fan CH. Sci China Chem, 2011, 54: 1273-1276 CrossRef Google Scholar

[45] Li X, Dunevall J, Ewing AG. Angew Chem Int Ed, 2016, 55: 9041-9044 CrossRef PubMed Google Scholar

[46] Arlett JL, Myers EB, Roukes ML. Nat Nanotech, 2011, 6: 203-215 CrossRef PubMed ADS Google Scholar

[47] Cao C, Ying YL, Hu ZL, Liao DF, Tian H, Long YT. Nat Nanotech, 2016, 11: 713-718 CrossRef PubMed ADS Google Scholar

[48] Staal RGW, Mosharov EV, Sulzer D. Nat Neurosci, 2004, 7: 341-346 CrossRef PubMed Google Scholar

[49] Hazelden IR, Ma X, Langer T, Bower JF. Angew Chem Int Ed, 2016, 55: 11198-11202 CrossRef PubMed Google Scholar

  • Figure 1

    The mechanism of DA oxidation on the surface of CFNE. (a) Vesicles was absorbed to the surface of CFNE, and then rupture happened. DA was released to the surface of nanoelectrode and oxidized, meanwhile, current signal was electrochemically recorded and analysed. (b) The DA can be oxidized to form dopamine-o-quinone (DOQ). (c) The scanning electron microscopy (SEM) image of vesicle with DOPC as the main component. (d) The SEM picture showed the nanotip of CFNE was within 80 nm in diameter (color online).

  • Figure 2

    Relationship of nanoelectrode lengths and noise level. (a) Noise of CFNEs with various lengths monitored by patch clamp. The lengths of CFNE were 28, 47, 70 and 110 μm; (b) SEM images of CFNEs with various lengths, the lengths were 28, 47, 70 and 110 μm respectively (scale bar=100 nm); (c) the noise of a small CFNE (length=50 μm) in 0.02 s at 700 mV vs. Ag/AgCl; (d) the noise of a large CFNE (length=150 μm) in 20 s at 700 mV vs. Ag/AgCl (color online).

  • Figure 3

    Amperometric quantification of DA in single vesicle. (a) Representative patch clamp trace detected from a diluted vesicular solution; (b) the enlarged details of nanoelectrode amperometry in the red part of (a); (c, d) examples of single vesicular collision event with different characteristics of amperometric peak (color online).

  • Figure 4

    (a, c, d) Histograms of single vesicular collision event characteristics including diameter (d=130 nm), half band width (W1/2=0.35 ms) and quantification of DA amount (N=100000); (b) dynamic light scattering (DLS) of the size distribution (diameter=106 nm) of vesicle for CFNE amperometric detection (color online).

  • Figure 5

    Determination of temporal resolution. (a) Amperometric detection of vesicles. Current peaks in complex event (the green part) were adjacent. (b) High temporal resolution of the vesicle detection indicating the time interval between two peaks was 0.1 ms (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1