SCIENCE CHINA Chemistry, Volume 60, Issue 9: 1236-1242(2017) https://doi.org/10.1007/s11426-017-9042-x

In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis

More info
  • ReceivedFeb 17, 2017
  • AcceptedMar 17, 2017
  • PublishedJul 4, 2017


Noble metal nanoparticles (Pd, Ag, Pt, Au) with small and relatively uniform sizes were loaded on polydopamine nanospheres through in situ galvanic replacement reaction in aqueous solution. No additional reductant, surfactant or organic solvent was needed. X-ray photoelectron spectroscopy results revealed that the amount of quinone increased, while the amount of phenolic hydroxyl decreased on PDA nanospheres, indicating that the galvanic displacement reaction occurred between catechol groups and noble metal ions. The as-prepared PDA/Pd exhibited high catalytic activity and excellent stability in styrene hydrogenation. Moreover, PDA spheres retains the photo-thermal effect to serve as a nano-sized heater to accelerate the catalytic reactions under near-infrared illumination.

Funded by

National Natural Science Foundation of China(21573245,21333009,21273244,21573244)

and the Chinese Academy of Sciences.


This work was supported by the National Natural Science Foundation of China (21573245, 21333009, 21273244, 21573244), and the Chinese Academy of Sciences.

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Zhao M, Deng K, He L, Liu Y, Li G, Zhao H, Tang Z. J Am Chem Soc, 2014, 136: 1738-1741 CrossRef PubMed Google Scholar

[2] Yang S, Cao C, Sun Y, Huang P, Wei F, Song W. Angew Chem Int Ed, 2015, 54: 2661-2664 CrossRef PubMed Google Scholar

[3] Choi KM, Na K, Somorjai GA, Yaghi OM. J Am Chem Soc, 2015, 137: 7810-7816 CrossRef PubMed Google Scholar

[4] Liu MH, Chen YW, Liu X, Kuo JL, Chu MW, Mou CY. ACS Catal, 2016, 6: 115-122 CrossRef Google Scholar

[5] Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z. Nature, 2016, 539: 76-80 CrossRef PubMed ADS Google Scholar

[6] Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Nat Energy, 2016, 1: 16184 CrossRef Google Scholar

[7] Cao Z, Kim D, Hong D, Yu Y, Xu J, Lin S, Wen X, Nichols EM, Jeong K, Reimer JA, Yang P, Chang CJ. J Am Chem Soc, 2016, 138: 8120-8125 CrossRef PubMed Google Scholar

[8] Zhang S, Chang CR, Huang ZQ, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y. J Am Chem Soc, 2016, 138: 2629-2637 CrossRef PubMed Google Scholar

[9] Abdelaal MY, Mohamed RM. J Alloys Compd, 2013, 576: 201-207 CrossRef Google Scholar

[10] Chen Z, Cui ZM, Niu F, Jiang L, Song WG. Chem Commun, 2010, 46: 6524-6526 CrossRef PubMed Google Scholar

[11] Pino L, Vita A, Cordaro M, Recupero V, Hegde MS. Appl Catal A-Gen, 2003, 243: 135-146 CrossRef Google Scholar

[12] Li P, He C, Cheng J, Ma CY, Dou BJ, Hao ZP. Appl Catal B-Environ, 2011, 101: 570-579 CrossRef Google Scholar

[13] Jiang Y, Li G, Li X, Lu S, Wang L, Zhang X. J Mater Chem A, 2014, 2: 4779-4787 CrossRef Google Scholar

[14] He L, Liu Y, Liu J, Xiong Y, Zheng J, Liu Y, Tang Z. Angew Chem Int Ed, 2013, 52: 3741-3745 CrossRef PubMed Google Scholar

[15] Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS. J Mater Chem A, 2014, 2: 4474-4490 CrossRef Google Scholar

[16] Jin Z, Xiao M, Bao Z, Wang P, Wang J. Angew Chem Int Ed, 2012, 51: 6406-6410 CrossRef PubMed Google Scholar

[17] Fu G, Zhang Q, Wu J, Sun D, Xu L, Tang Y, Chen Y. Nano Res, 2015, 8: 3963-3971 CrossRef Google Scholar

[18] Fu GT, Liu C, Zhang Q, Chen Y, Tang YW. Sci Rep, 2015, 5: 13703 CrossRef PubMed ADS Google Scholar

[19] Bharath G, Naldoni A, Ramsait KH, Abdel-Wahab A, Madhu R, Alsharaeh E, Ponpandian N. J Mater Chem A, 2016, 4: 6385-6394 CrossRef Google Scholar

[20] Du J, Qi J, Wang D, Tang Z. Energy Environ Sci, 2012, 5: 6914-6918 CrossRef Google Scholar

[21] Qi J, Chen J, Li G, Li S, Gao Y, Tang Z. Energy Environ Sci, 2012, 5: 8937-8941 CrossRef Google Scholar

[22] Li P, Huang PP, Wei FF, Sun YB, Cao CY, Song WG. J Mater Chem A, 2014, 2: 12739-12745 CrossRef Google Scholar

[23] Yang SL, Cao CY, Wei FF, Huang PP, Sun YB, Song WG. ChemCatChem, 2014, 6: 1868-1872 CrossRef Google Scholar

[24] Yang S, Peng L, Cao C, Wei F, Liu J, Zhu Y-N, Liu C, Wang X, Song W. Chem Asian J, 2016, 11: 1868–1872. Google Scholar

[25] Yan J, Yang L, Lin MF, Ma J, Lu X, Lee PS. Small, 2013, 9: 596-603 CrossRef PubMed Google Scholar

[26] Ai K, Liu Y, Ruan C, Lu L, Lu GM. Adv Mater, 2013, 25: 998-1003 CrossRef PubMed Google Scholar

[27] Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Adv Mater, 2013, 25: 1353-1359 CrossRef PubMed Google Scholar

[28] Wei F, Cao C, Sun Y, Yang S, Huang P, Song W. ChemCatChem, 2015, 7: 2475-2479 CrossRef Google Scholar

[29] Yu X, Wang H, Guo L, Wang L. Chem Asian J, 2014, 9: 3221-3227 CrossRef PubMed Google Scholar

[30] Liu R, Guo Y, Odusote G, Qu F, Priestley RD. ACS Appl Mater Interfaces, 2013, 5: 9167-9171 CrossRef PubMed Google Scholar

[31] Kim I, Son HY, Yang MY, Nam YS. ACS Appl Mater Interfaces, 2015, 7: 14415-14422 CrossRef Google Scholar

[32] Son HY, Ryu JH, Lee H, Nam YS. ACS Appl Mater Interfaces, 2013, 5: 6381-6390 CrossRef PubMed Google Scholar

[33] Li P, Liu H, Yu Y, Cao CY, Song WG. Chem Asian J, 2013, 8: 2459-2465 CrossRef PubMed Google Scholar

[34] Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G. ACS Catal, 2016, 6: 2265-2279 CrossRef Google Scholar

[35] Sun W, Yang W, Xu Z, Li Q, Shang JK. ACS Appl Mater Interfaces, 2016, 8: 2035-2047 CrossRef Google Scholar

[36] Guo L, Liu Q, Li G, Shi J, Liu J, Wang T, Jiang G. Nanoscale, 2012, 4: 5864 CrossRef PubMed Google Scholar

[37] Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL. Angew Chem Int Ed, 2007, 46: 7251-7254 CrossRef PubMed Google Scholar

[38] Yin L, Liebscher J. Chem Rev, 2007, 107: 133-173 CrossRef PubMed Google Scholar

[39] Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J Am Chem Soc, 2009, 131: 8262-8270 CrossRef PubMed Google Scholar

[40] Peterson EJ, DeLaRiva AT, Lin S, Johnson RS, Guo H, Miller JT, Hun Kwak J, Peden CHF, Kiefer B, Allard LF, Ribeiro FH, Datye AK. Nat Commun, 2014, 5: 4885 CrossRef PubMed ADS Google Scholar

[41] Wang Y, Choi SI, Zhao X, Xie S, Peng HC, Chi M, Huang CZ, Xia Y. Adv Funct Mater, 2014, 24: 131-139 CrossRef Google Scholar

[42] Zhang Z, Zhen J, Liu B, Lv K, Deng K. Green Chem, 2015, 17: 1308-1317 CrossRef Google Scholar

[43] Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L. J Am Chem Soc, 2015, 137: 5260-5263 CrossRef PubMed Google Scholar

[44] Li Z, Liu J, Huang Z, Yang Y, Xia C, Li F. ACS Catal, 2013, 3: 839-845 CrossRef Google Scholar

[45] Cao Y, Wang Z, Liao S, Wang J, Wang Y. Chem Eur J, 2016, 22: 1152-1158 CrossRef PubMed Google Scholar

[46] Dutta S, Sarkar S, Ray C, Roy A, Sahoo R, Pal T. ACS Appl Mater Interfaces, 2014, 6: 9134-9143 CrossRef PubMed Google Scholar

[47] Li H, Liao J, Xibin Z. J Mater Chem A, 2014, 2: 17530-17535 CrossRef Google Scholar

[48] Ji M, Jiang N, Chang J, Sun J. Adv Funct Mater, 2014, 24: 5412-5419 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有