logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 920-926(2017) https://doi.org/10.1007/s11426-017-9049-5

Reductive amination of 1,6-hexanediol with Ru/Al2O3 catalyst in supercritical ammonia

More info
  • ReceivedJan 10, 2017
  • AcceptedApr 1, 2017
  • PublishedMay 22, 2017

Abstract

Hexamethylenediamine (HMDA) is an important reagent for the synthesis of Nylon-6,6, and it is usually produced by the hydrogenation of adiponitrile using a toxic reagent of hydrocyanic acid. Herein, we developed an environmental friendly route to produce HMDA via catalytic reductive amination of 1,6-hexanediol (HDO) in the presence of hydrogen. The activities of several heterogeneous metal catalysts such as supported Ni, Co, Ru, Pt, Pd catalysts were screened for the present reaction in supercritical ammonia without any additives. Among the catalysts examined, Ru/Al2O3 presented a high catalytic activity and highest selectivity for the desired product of HMDA. The high performance of Ru/Al2O3 was discussed based on the Ru dispersion and the surface properties like the acid-basicity. In addition, the reaction parameters such as reaction temperature, time, H2 and NH3 pressure were examined, and the reaction processes were discussed in detail.


Funded by

National Basic Research Program of China(2016YFA0602900)

Youth Innovation Promotion Association CAS(2016206)

Jilin Provincial Science and Technology Program of China(20150301012GX)


Acknowledgment

This work was supported by the National Basic Research Program of China (2016YFA0602900), Youth Innovation Promotion Association CAS (2016206), and Jilin Provincial Science and Technology Program of China (20150301012GX).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Dros AB, Larue O, Reimond A, De Campo F, Pera-Titus M. Green Chem, 2015, 17: 4760-4772 CrossRef Google Scholar

[2] Roundhill DM. Chem Rev, 1992, 92: 1-27 CrossRef Google Scholar

[3] Fischer A, Mallat T, Baiker A. Catal Today, 1997, 37: 167-189 CrossRef Google Scholar

[4] Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. ChemCatChem, 2011, 3: 1853-1864 CrossRef Google Scholar

[5] Shimizu K. Catal Sci Technol, 2015, 5: 1412-1427 CrossRef Google Scholar

[6] Zhang Y, Qi X, Cui X, Shi F, Deng Y. Tetrahedron Lett, 2011, 52: 1334-1338 CrossRef Google Scholar

[7] Tuteja J, Choudhary H, Nishimura S, Ebitani K. ChemSusChem, 2014, 7: 96-100 CrossRef PubMed Google Scholar

[8] Xiao B, Zheng M, Li X, Pang J, Sun R, Wang H, Pang X, Wang A, Wang X, Zhang T. Green Chem, 2016, 18: 2175-2184 CrossRef Google Scholar

[9] Gunanathan C, Milstein D. Angew Chem Int Ed, 2008, 47: 8661-8664 CrossRef PubMed Google Scholar

[10] Molnár Á, Sirokmán G, Bartók M. J Mol Catal, 1983, 19: 25-33 CrossRef Google Scholar

[11] Sirokmán G, Molnár Á, Bartók M. J Mol Catal, 1983, 19: 35-40 CrossRef Google Scholar

[12] Fischer A, Maciejewski M, Bürgi T, Mallat T, Baiker A. J Catal, 1999, 183: 373-383 CrossRef Google Scholar

[13] Fischer A, Mallat T, Baiker A. Angew Chem Int Ed, 1999, 38: 351-354 CrossRef Google Scholar

[14] Fischer A, Mallat T, Baiker A. J Mol Catal A-Chem, 1999, 149: 197-204 CrossRef Google Scholar

[15] Jenzer G, Mallat T, Baiker A. Catal Lett, 1999, 61: 111-114 CrossRef Google Scholar

[16] Fischer A, Mallat T, Baiker A. J Catal, 1999, 182: 289-291 CrossRef Google Scholar

[17] Imm S, Bähn S, Zhang M, Neubert L, Neumann H, Klasovsky F, Pfeffer J, Haas T, Beller M. Angew Chem Int Ed, 2011, 50: 7599-7603 CrossRef PubMed Google Scholar

[18] Baumann W, Spannenberg A, Pfeffer J, Haas T, Köckritz A, Martin A, Deutsch J. Chem Eur J, 2013, 19: 17702-17706 CrossRef PubMed Google Scholar

[19] Pingen D, Diebolt O, Vogt D. ChemCatChem, 2013, 5: 2905-2912 CrossRef Google Scholar

[20] Pfützenreuter R, Rose M. ChemCatChem, 2016, 8: 251-255 CrossRef Google Scholar

[21] Mormul J, Breitenfeld J, Trapp O, Paciello R, Schaub T, Hofmann P. ACS Catal, 2016, 6: 2802-2810 CrossRef Google Scholar

[22] Horlenko T, Tatum HW. Process for producing hexamethylenediamine from 1-6-hexanediol. US Patent, 3268588, 1966-08-23. Google Scholar

[23] Winderl S, Haarer E, Corr H, Hornberger P. Production of diaminoalkanes. US Patent, 3270059, 1966-08-30. Google Scholar

[24] Romanelli GP, Autino JC, Blanco MN, Pizzio LR. Appl Catal A-Gen, 2005, 295: 209-215 CrossRef Google Scholar

[25] Altass HM, Khder AERS. J Mol Catal A-Chem, 2016, 411: 138-145 CrossRef Google Scholar

[26] Srinivas N, Venu Gopal D, Srinivas B, Kulkarni SJ, Subrahmanyam M. Microporous Mesoporous Mater, 2002, 51: 43-50 CrossRef Google Scholar

[27] Zhao F, Ikushima Y, Arai M. J Catal, 2004, 224: 479-483 CrossRef Google Scholar

  • Scheme 1

    Possible reaction pathways for the reductive amination of 1,6-hexanediol.

  • Figure 1

    XRD patterns of supported Ru catalysts (color online).

  • Figure 2

    CO2-TPD profiles of supported Ru catalysts (color online).

  • Figure 3

    Selectivity of HMDA vs. base amount and acid strength over the supported Ru catalysts (color online).

  • Figure 4

    The changes of conversion and product selectivity with reaction time for the reductive amination of 1,6-hexanediol at different temperatures. (a) 210 °C; (b) 220 °C; (c) 230 °C. Reaction conditions: 50 mg Ru/Al2O3, 5 mmol 1,6-hexanediol, 5 mL tert-butanol, 1 MPa H2,15 MPa NH3 (color online).

  • Figure 5

    Influence of H2 pressure on the reductive amination of 1,6-hexanediol. Reaction conditions: 50 mg Ru/Al2O3, 5 mmol 1,6-hexanediol, 5 mL tert-butanol, 15 MPa NH3, 220 °C, 6 h (color online).

  • Figure 6

    Influence of NH3 pressure on the reductive amination of 1,6-hexanediol. Reaction conditions: 50 mg Ru/Al2O3, 5 mmol 1,6-hexanediol, 5 mL tert-butanol, 1 MPa H2, 220 °C, 6 h (color online).

  • Table 1   Reductive amination of 1,6-hexanediol over various catalysts

    Entry

    Catalyst

    Conv. (%)

    Selectivity (%)

    Rate c) (h−1)

    AHO

    HMDA

    HMI

    Others b)

    1

    Co/Al2O3

    100

    6.5

    35.8

    45.9

    11.8

    8

    2

    Ni/Al2O3

    100

    6.5

    21.2

    66.5

    5.8

    8

    3

    Pt/Al2O3

    100

    6.3

    21.5

    48.7

    23.5

    126

    4

    Pd/Al2O3

    100

    11.8

    29.8

    50.2

    8.2

    67

    5

    Ru/Al2O3

    100

    38.4

    31.9

    29.7

    90 d)

    6

    Ru/Nb2O5

    100

    19.1

    31.3

    23.0

    26.6

    61

    7

    Ru/SiO2

    71.5

    63.0

    17.2

    6.6

    13.2

    33

    8

    Ru/MgO

    70.2

    68.8

    17.6

    7.5

    6.1

    31

    9 e)

    Ru/MgO

    98.9

    3.2

    14.2

    51.0

    31.6

    33

    Reaction conditions: 50 mg catalyst, 5 mmol 1,6-hexanediol, 5 mL tert-butanol, 1 MPa H2,15 MPa NH3, 220 °C, 6 h; b) by-products of dimer and trimer; c) reaction rate was calculated by the mole of hydroxyl consumed divided the moles of total amount of Ru used and the reaction time; d) 4.5 h; e) 100 mg catalyst.

  • Table 2   The results and properties of supported Ru catalysts

    Entry

    Catalyst

    Particle size (nm)

    SARu a) (m2/g)

    Dispersion a) (%)

    Ei b) (mV)

    Amount of basic site c) (mmol/g)

    TOF d) (h−1)

    1

    Ru/Nb2O5

    13.2

    36.9

    10.1

    46.5

    0.13

    603

    2

    Ru/SiO2

    6.5

    75.6

    20.7

    −15.8

    0.18

    159

    3

    Ru/Al2O3

    3.6

    135.3

    37.1

    −19.6

    0.44

    242

    4

    Ru/MgO

    10.2

    47.6

    13.0

    −161.6

    0.94

    239

    Ru metal-specific surface area (SARu) and dispersion were calculated based on the amount of hydrogen chemisorption; b) initial electrode potential of the suspension of catalysts in acetonitrile as shown in Figure S1; c) amount of surface basic site (mmol/g) determined by CO2-TPD; d) turnover frequency, which was estimated as the overall rate of –OH conversion normalized by the number of active Ru sites over the specified time. The number of active sites was calculated by (the Ru dispersion)×(the total number of Ru atoms).

  • Table 3   Results for the reaction of HDO, AHO, HMDA and HMI over Ru/AlO under the reductive amination conditions

    Substrate

    Conv. (%)

    Selectivity (%)

    HMI

    HMDA

    Others b)

    HDO

    100

    31.9

    38.4

    29.7

    AHO

    100

    33.0

    20.7

    46.3

    HMDA

    86.9

    53.6

    46.4

    HMI

    58.0

    14.7

    85.3

    Reaction conditions: 50 mg catalyst, 5 mmol reactant, 5 mL tert-butanol, 1 MPa H2,15 MPa NH3, 220 °C, 6 h; b) by-products of dimer (9 and 10) and trimer produced via dimerization, cyclization and oligomerization.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1