logo

SCIENCE CHINA Chemistry, Volume 60, Issue 7: 853-869(2017) https://doi.org/10.1007/s11426-017-9067-1

Recent advances in catalytic production of sugar alcohols and their applications

More info
  • ReceivedJan 5, 2017
  • AcceptedApr 27, 2017
  • PublishedJun 5, 2017

Abstract

Conversion of non-edible biomass into fuels and value-added chemicals has achieved great attention to cope the world’s energy requirements. Lignocellulose based sugar alcohols such as sorbitol, mannitol, xylitol, and erythritol can be potentially used as emerging fuels and chemicals. These sugar alcohols can be converted into widely used products (e.g. polymer synthesis, food and pharmaceuticals industry). The heterogeneous catalytic production of sugar alcohols from renewable biomass provides a safe and sustainable approach. Hydrolysis, coupled with hydrogenation and hydrogenolysis has been proved to be more effective strategy for sugar alcohols production from biomass. This review summarizes the recent advances in biomass upgrading reactions for the production of sugar alcohols and their comprehensive applications.


Funded by

National Natural Science Foundation of China(21325208,21172209,21272050,21402181,21572212)

Chinese Academy of Science(KJCX2-EW-J02,YZ201563)

Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(2014FXCX006)

China Postdoctoral Science Foundation(2014M561835)

Specialized Research Fund for the Doctoral Program of Higher Education(20123402130008)

Fundamental Research Funds for the Central Universities(WK2060190025,WK2060190033,WK2060190040,WK6030000023)

Key Technologies R&D Programme of Anhui Province(1604a0702027)

and Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21325208, 21172209, 21272050, 21402181, 21572212), Chinese Academy of Science (KJCX2-EW-J02, YZ201563), the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2014FXCX006), China Postdoctoral Science Foundation (2014M561835), the Specialized Research Fund for the Doctoral Program of Higher Education (20123402130008), Fundamental Research Funds for the Central Universities (WK2060190025, WK2060190033, WK2060190040, WK6030000023), the Key Technologies R&D Programme of Anhui Province (1604a0702027), and Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


References

[1] Armaroli N, Balzani V. Angew Chem Int Ed, 2007, 46: 52-66 CrossRef PubMed Google Scholar

[2] Murray J, King D. Nature, 2012, 481: 433-435 CrossRef PubMed ADS Google Scholar

[3] McKendry P. Bioresource Tech, 2002, 83: 37-46 CrossRef Google Scholar

[4] Liu C, Wang H, Karim AM, Sun J, Wang Y. Chem Soc Rev, 2014, 43: 7594-7623 CrossRef PubMed Google Scholar

[5] Tathod A, Kane T, Sanil ES, Dhepe PL. J Mol Catal A-Chem, 2014, 388-389: 90-99 CrossRef Google Scholar

[6] Yue H, Zhao Y, Ma X, Gong J. Chem Soc Rev, 2012, 41: 4218-4244 CrossRef PubMed Google Scholar

[7] Gallezot P. Chem Soc Rev, 2012, 41: 1538-1558 CrossRef PubMed Google Scholar

[8] Zhang J, Li J, Wu SB, Liu Y. Ind Eng Chem Res, 2013, 52: 11799-11815 CrossRef Google Scholar

[9] Aoki MAY, Pastore GM, Park YK. Biotechnol Lett, 1993, 15: 383-388 CrossRef Google Scholar

[10] van der Klis F, Gootjes L, van Haveren J, van Es DS, Bitter JH. Green Chem, 2015, 17: 3900-3909 CrossRef Google Scholar

[11] Xuan J, Leung MKH, Leung DYC, Ni M. Renew Sustain Energ Rev, 2009, 13: 1301-1313 CrossRef Google Scholar

[12] Cortright RD, Davda RR, Dumesic JA. Nature, 2002, 418: 964-967 CrossRef PubMed ADS Google Scholar

[13] Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S. Top value added chemicals from biomass. Vol. I: results of screening for potential candidates from sugars and synthesis gas. Technical Report. Washington DC: Department of Energy Washington DC, 2004. Google Scholar

[14] http://www.Imarcgroup.Com/global-sorbitol-glucitol-market. Acessed on 2016-12-10. Google Scholar

[15] http://www.Hexaresearch.Com/research-report/sorbitol-market/. Acessed on 2016-12-10. Google Scholar

[16] http://www.Grandviewresearch.Com/industryanalysis/mannitol market. Acessed on 2016-12-11. Google Scholar

[17] Biddy MJ, Scarlata C, Kinchin C. Chemicals from biomass: a market assessment of bioproducts with near-term potential. Technical Report. Golden, Colorado: National Renewable Energy Laboratory (NREL), 2016. Google Scholar

[18] Deuss PJ, Barta K, de Vries JG. Catal Sci Technol, 2014, 4: 1174-1196 CrossRef Google Scholar

[19] Yan N, Zhao C, Dyson PJ, Wang C, Liu L, Kou Y. ChemSusChem, 2008, 1: 626-629 CrossRef PubMed Google Scholar

[20] Ding LN, Wang AQ, Zheng MY, Zhang T. ChemSusChem, 2010, 3: 818-821 CrossRef PubMed Google Scholar

[21] Fan L, Gharpuray MM, Lee YH. Design and Economic Evaluation of Cellulose Hydrolysis Processes. Vol 3. Biotechnology Monographs. Berlin Heidelberg: Springer, 1987. 149–187. Google Scholar

[22] Zhang J, Lin L, Zhang J, Shi J. Carbohyd Res, 2011, 346: 1327-1332 CrossRef PubMed Google Scholar

[23] Zhang X, Durndell LJ, Isaacs MA, Parlett CMA, Lee AF, Wilson K. ACS Catal, 2016, 6: 7409-7417 CrossRef Google Scholar

[24] Plazinski W, Plazinska A, Drach M. Phys Chem Chem Phys, 2015, 17: 21622-21629 CrossRef PubMed ADS Google Scholar

[25] Trinh QT, Chethana BK, Mushrif SH. J Phys Chem C, 2015, 119: 17137-17145 CrossRef Google Scholar

[26] Grass ME, Rioux RM, Somorjai GA. Catal Lett, 2009, 128: 1-8 CrossRef Google Scholar

[27] Chen J, Wang S, Huang J, Chen L, Ma L, Huang X. ChemSusChem, 2013, 6: 1545-1555 CrossRef PubMed Google Scholar

[28] Chatterjee C, Pong F, Sen A. Green Chem, 2015, 17: 40-71 CrossRef Google Scholar

[29] Yang G, Pidko EA, Hensen EJM. ChemSusChem, 2013, 6: 1688-1696 CrossRef PubMed Google Scholar

[30] Wang X, Meng L, Wu F, Jiang Y, Wang L, Mu X. Green Chem, 2012, 14: 758-765 CrossRef Google Scholar

[31] Liang G, Cheng H, Li W, He L, Yu Y, Zhao F. Green Chem, 2012, 14: 2146-2149 CrossRef Google Scholar

[32] Yang P, Kobayashi H, Hara K, Fukuoka A. ChemSusChem, 2012, 5: 920-926 CrossRef PubMed Google Scholar

[33] Li Y, Liao Y, Cao X, Wang T, Ma L, Long J, Liu Q, Xua Y. Biomass Bioenergy, 2015, 74: 148-161 CrossRef Google Scholar

[34] Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF. ChemSusChem, 2010, 3: 698-701 CrossRef PubMed Google Scholar

[35] Van de Vyver S, Geboers J, Schutyser W, Dusselier M, Eloy P, Dornez E, Seo JW, Courtin CM, Gaigneaux EM, Jacobs PA, Sels BF. ChemSusChem, 2012, 5: 1549-1558 CrossRef PubMed Google Scholar

[36] Kobayashi H, Hosaka Y, Hara K, Feng B, Hirosaki Y, Fukuoka A. Green Chem, 2014, 16: 637-644 CrossRef Google Scholar

[37] Zhang B, Li X, Wu Q, Zhang C, Yu Y, Lan M, Wei X, Ying Z, Liu T, Liang G, Zhao F. Green Chem, 2016, 18: 3315-3323 CrossRef Google Scholar

[38] Moliner M, Martínez C, Corma  A. Angew Chem Int Ed, 2015, 54: 3560-3579 CrossRef PubMed Google Scholar

[39] Shrotri A, Tanksale A, Beltramini JN, Gurav H, Chilukuri SV. Catal Sci Technol, 2012, 2: 1852-1858 CrossRef Google Scholar

[40] Liang G, He L, Arai M, Zhao F. ChemSusChem, 2014, 7: 1415-1421 CrossRef PubMed Google Scholar

[41] Pang J, Wang A, Zheng M, Zhang Y, Huang Y, Chen X, Zhang T. Green Chem, 2012, 14: 614-617 CrossRef Google Scholar

[42] Deng T, Liu H. Green Chem, 2013, 15: 116-124 CrossRef Google Scholar

[43] Romero A, Cantero DA, Nieto-Márquez A, Martínez C, Alonso E, Cocero MJ. Green Chem, 2016, 18: 4051-4062 CrossRef Google Scholar

[44] Romero A, Nieto-Márquez A, Alonso E. Appl Catal A-Gen, 2017, 529: 49-59 CrossRef Google Scholar

[45] Wang D, Niu W, Tan M, Wu M, Zheng X, Li Y, Tsubaki N. ChemSusChem, 2014, 7: 1398-1406 CrossRef PubMed Google Scholar

[46] Ribeiro LS, Órfão JJM, Pereira MFR. Green Chem, 2015, 17: 2973-2980 CrossRef Google Scholar

[47] Yabushita M, Kobayashi H, Fukuoka A. Appl Catal B-Environ, 2014, 145: 1-9 CrossRef Google Scholar

[48] Almeida JMAR, Da Vià L, Demma Carà P, Carvalho Y, Romano PN, Peña JAO, Smith L, Sousa-Aguiar EF, Lopez-Sanchez JA. Catal Today, 2017, 279: 187-193 CrossRef Google Scholar

[49] Ribeiro LS, Delgado JJ, de Melo Órfão JJ, Pereira MF. Catal Today, 2016, 279: 244–251. Google Scholar

[50] Xi J, Ding D, Shao Y, Liu X, Lu G, Wang Y. ACS Sustain Chem Eng, 2014, 2: 2355-2362 CrossRef Google Scholar

[51] Otomo R, Yokoi T, Tatsumi T. Appl Catal A-Gen, 2015, 505: 28-35 CrossRef Google Scholar

[52] Zhang J, Wang L, Liu F, Meng X, Mao J, Xiao FS. Catal Today, 2015, 242: 249-254 CrossRef Google Scholar

[53] Kobayashi H, Yokoyama H, Feng B, Fukuoka A. Green Chem, 2015, 17: 2732-2735 CrossRef Google Scholar

[54] De Almeida  RM, Li J, Nederlof C, O’Connor P, Makkee M, Moulijn JA. ChemSusChem, 2010, 3: 325-328 CrossRef PubMed Google Scholar

[55] Shi J, Shan Y, Tian Y, Wan Y, Zheng Y, Feng Y. RSC Adv, 2016, 6: 13514-13521 CrossRef Google Scholar

[56] Cao D, Yu B, Zhang S, Cui L, Zhang J, Cai W. Appl Catal A-Gen, 2016, 528: 59-66 CrossRef Google Scholar

[57] Zou J, Cao D, Tao W, Zhang S, Cui L, Zeng F, Cai W. RSC Adv, 2016, 6: 49528-49536 CrossRef Google Scholar

[58] Tokarev AV, Kirilin AV, Murzina EV, Eränen K, Kustov LM, Murzin DY, Mikkola JP. Int J Hydrogen Energ, 2010, 35: 12642-12649 CrossRef Google Scholar

[59] Shabaker JW, Huber GW, Dumesic JA. J Catal, 2004, 222: 180-191 CrossRef Google Scholar

[60] Zhang Q, Qiu K, Li B, Jiang T, Zhang X, Ma L, Wang T. Fuel, 2011, 90: 3468-3472 CrossRef Google Scholar

[61] Vilcocq L, Cabiac A, Especel C, Lacombe S, Duprez D. Catal Commun, 2011, 15: 18-22 CrossRef Google Scholar

[62] Xi J, Xia Q, Shao Y, Ding D, Yang P, Liu X, Lu G, Wang Y. Appl Catal B-Environ, 2016, 181: 699-706 CrossRef Google Scholar

[63] Duarte HA, Sad ME, Apesteguía CR. Int J Hydrogen Energ, 2016, 41: 17290-17296 CrossRef Google Scholar

[64] Soták T, Schmidt T, Hronec M. Appl Catal A-Gen, 2013, 459: 26-33 CrossRef Google Scholar

[65] Ye L, Duan X, Lin H, Yuan Y. Catal Today, 2012, 183: 65-71 CrossRef Google Scholar

[66] Leo IM, Granados ML, Fierro JLG, Mariscal R. Chin J Catal, 2014, 35: 614-621 CrossRef Google Scholar

[67] Murillo Leo I, López Granados M, Fierro JLG, Mariscal R. Appl Catal B-Environ, 2016, 185: 141-149 CrossRef Google Scholar

[68] Sun J, Liu H. Catal Today, 2014, 234: 75-82 CrossRef Google Scholar

[69] Sohounloue DK, Montassier C, Barbier J. React Kinet Catal Lett, 1983, 22: 391-397 CrossRef Google Scholar

[70] Deutsch KL, Lahr DG, Shanks BH. Green Chem, 2012, 14: 1635-1642 CrossRef Google Scholar

[71] Jia Y, Liu H. Catal Sci Technol, 2016, 6: 7042-7052 CrossRef Google Scholar

[72] Guo X, Dong H, Li B, Dong L, Mu X, Chen X. J Mol Catal A-Chem, 2017, 426: 79-87 CrossRef Google Scholar

[73] Bhandari BR, Roos YH. Carbohyd Res, 2003, 338: 361-367 CrossRef Google Scholar

[74] Arcos JA, Bernabé M, Otero C. Biotechnol Bioeng, 1998, 60: 53-60 CrossRef Google Scholar

[75] Nezzal A, Aerts L, Verspaille M, Henderickx G, Redl A. J Cryst Growth, 2009, 311: 3863-3870 CrossRef ADS Google Scholar

[76] Mathlouthi M, Benmessaoud G, Rogé B. Food Chem, 2012, 132: 1630-1637 CrossRef Google Scholar

[77] Saniocki I, Sakmann A, Leopold CS. J Excipients Food Chem, 2013, 4: 169–182. Google Scholar

[78] Sweetman SC. Martindale: the Complete Drug Reference. London: Pharmaceutical Press, 2009. Google Scholar

[79] Burggraaf J, Schoemaker RC, Lentjes EGWM, Cohen AF. Eur J Pharm Sci, 2000, 12: 133-139 CrossRef Google Scholar

[80] Debord B, Lefebvre C, Guyot-Hermann AM, Hubert J, Bouché R, Cuyot JC. Drug Dev Ind Pharm, 1987, 13: 1533-1546 CrossRef Google Scholar

[81] Xu Y, Tian Z, Wen G, Xu Z, Qu W, Lin L. Chem Lett, 2006, 35: 216-217 CrossRef Google Scholar

[82] Soetaert W, Buchholz K, Vandamme E. Agro Food Ind Hi Tech, 1995, 6: 41–44. Google Scholar

[83] Nielsen JS, Sally M, Mullins RJ, Slater M, Groat T, Gao X, de la Cruz JS, Ellis MKM, Schreiber M, Malinoski DJ. Am J Surg, 2017, 213: 71-79 CrossRef PubMed Google Scholar

[84] Von Berenberg P, Unterberg A, Schneider GH, Lanksch WR. Treatment of traumatic brain edema by multiple doses of mannitol. In: Ito U, Eds. Brain Edema IX. Acta Neurochirurgica, Vol 60. Vienna: Springer, 1994. 531–533. Google Scholar

[85] Rapoport SI. Expert Opin Inv Drug, 2001, 10: 1809-1818 CrossRef PubMed Google Scholar

[86] Miller G. Science, 2002, 297: 1116-1118 CrossRef PubMed Google Scholar

[87] Johnson J. Specialized Sugars for the Food Industries. Partk Ridge, New Jersey: Noyes Date Corporation, 1976. 264–277. Google Scholar

[88] Shen B, Jensen RG, Bohnert HJ. Plant Physiol, 1997, 115: 527-532 CrossRef Google Scholar

[89] Bozell JJ, Petersen GR. Green Chem, 2010, 12: 539-554 CrossRef Google Scholar

[90] Isokangas P, Alanen P, Tiekso J, Makinen KK. J Am Dent Assoc, 1988, 117: 315-320 CrossRef Google Scholar

[91] http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=101.80. Acessed on 2016-12-26. Google Scholar

[92] Buckl H, Fahn R, Hofstadt CE. Process for obtaining xylitol from natural products containing xylan. US Patent 3,980,719, 1976-09-14. Google Scholar

[93] Yadav M, Mishra DK, Hwang JS. Appl Catal A-Gen, 2012, 425-426: 110-116 CrossRef Google Scholar

[94] Mishra DK, Dabbawala AA, Hwang JS. J Mol Catal A-Chem, 2013, 376: 63-70 CrossRef Google Scholar

[95] Baudel H, Abreu C, Zaror C. J Chem Technol Biotechnol, 2005, 80: 230-233 CrossRef Google Scholar

[96] Yi G, Zhang Y. ChemSusChem, 2012, 5: 1383-1387 CrossRef PubMed Google Scholar

[97] Kobayashi H, Yabushita M, Komanoya T, Hara K, Fujita I, Fukuoka A. ACS Catal, 2013, 3: 581-587 CrossRef Google Scholar

[98] Hernandez-Mejia C, Gnanakumar ES, Olivos-Suarez A, Gascon J, Greer HF, Zhou W, Rothenberg G, Raveendran Shiju N. Catal Sci Technol, 2016, 6: 577-582 CrossRef Google Scholar

[99] Ekou T, Ekou L, Vicente A, Lafaye G, Pronier S, Especel C, Marécot P. J Mol Catal A-Chem, 2011, 337: 82-88 CrossRef Google Scholar

[100] Liu S, Okuyama Y, Tamura M, Nakagawa Y, Imai A, Tomishige K. Green Chem, 2016, 18: 165-175 CrossRef Google Scholar

[101] Xie X, Han J, Wang H, Zhu X, Liu X, Niu Y, Song Z, Ge Q. Catal Today, 2014, 233: 70-76 CrossRef Google Scholar

[102] Liu S, Okuyama Y, Tamura M, Nakagawa Y, Imai A, Tomishige K. Catal Today, 2016, 269: 122-131 CrossRef Google Scholar

[103] Weng Y, Qiu S, Wang C, Chen L, Yuan Z, Ding M, Zhang Q, Ma L, Wang T. Fuel, 2016, 170: 77-83 CrossRef Google Scholar

[104] Jia Y, Liu H. Chin J Catal, 2015, 36: 1552-1559 CrossRef Google Scholar

[105] Ribeiro LS, Delgado JJ, de Melo Órfão JJ, Ribeiro Pereira MF. RSC Adv, 2016, 6: 95320-95327 CrossRef Google Scholar

[106] Dietrich K, Mejia CH, Verschuren P, Rothenberg G, Shiju NR. Org Process Res Dev, 2016, 21: 165–170. Google Scholar

[107] Ennaert T, Feys S, Hendrikx D, Jacobs PA, Sels BF. Green Chem, 2016, 18: 5295-5304 CrossRef Google Scholar

[108] Reed MA, Richey LC, Hook JS, Schnell PG. Hard coated chewing gum with improved shelf life, with xylitol and polyol coatings. US Patent, 5,376,389, 1994-12-27. Google Scholar

[109] Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA. Critical Rev Food Sci Nutrition, 2015, 55: 1514-1528 CrossRef PubMed Google Scholar

[110] Sirenius I, Krogerus VE, Leppänen T. J Pharm Sci, 1979, 68: 791-792 CrossRef Google Scholar

[111] Uhara M, Kontiokari T, Koskela M, Niemela M. Int J Pediatr Otorhi, 1997, 2: 217. Google Scholar

[112] Sjökvist E, Nyström C. Int J Pharm, 1991, 67: 139-153 CrossRef Google Scholar

[113] Giertsen E, Emberland H, Scheie AA. Caries Res, 1999, 33: 23-31 CrossRef Google Scholar

[114] Featherstone JDB. J Dental Res, 2004, 83: 39-42 CrossRef Google Scholar

[115] Zoulias EI, Piknis S, Oreopoulou V. J Sci Food Agric, 2000, 80: 2049-2056 CrossRef Google Scholar

[116] Jeya M, Lee KM, Tiwari MK, Kim JS, Gunasekaran P, Kim SY, Kim IW, Lee JK. Appl Microbiol Biotechnol, 2009, 83: 225-231 CrossRef PubMed Google Scholar

[117] Oh DK, Cho CH, Lee JK, Kim SY. J Industrial Microbiol Biotech, 2001, 26: 248-252 CrossRef Google Scholar

[118] Rakicka M, Rywińska A, Cybulski K, Rymowicz W. Brazilian J Microbiol, 2016, 47: 417-423 CrossRef PubMed Google Scholar

[119] Rywińska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W. Biomass Bioenergy, 2013, 48: 148-166 CrossRef Google Scholar

[120] Oosterveld A, Beldman G, Schols HA, Voragen AGJ. Carbohyd Res, 1996, 288: 143-153 CrossRef Google Scholar

[121] Monrad RN, Madsen R. J Org Chem, 2007, 72: 9782-9785 CrossRef PubMed Google Scholar

[122] Kedel'baev BS, Imankulov NN, Kuatbekov AM, Ismailov TM. Chem Nat Compd, 2000, 36: 213-215 CrossRef Google Scholar

[123] Vasiliu M, Guynn K, Dixon DA. J Phys Chem C, 2011, 115: 15686-15702 CrossRef Google Scholar

[124] Musolino MG, Scarpino LA, Mauriello F, Pietropaolo R. ChemSusChem, 2011, 4: 1143-1150 CrossRef PubMed Google Scholar

[125] Palkovits R, Tajvidi K, Ruppert AM, Procelewska J. Chem Commun, 2011, 47: 576-578 CrossRef PubMed Google Scholar

[126] Liu J, Tian XN, Zhao XS. Aust J Chem, 2009, 62: 1020-1026 CrossRef Google Scholar

[127] Zhao L, Zhou JH, Sui ZJ, Zhou XG. Chem Eng Sci, 2010, 65: 30-35 CrossRef Google Scholar

[128] Fabre L, Gallezot P, Perrard A. Catal Commun, 2001, 2: 249-253 CrossRef Google Scholar

[129] Fabre L, Gallezot P, Perrard A. J Catal, 2002, 208: 247-254 CrossRef Google Scholar

[130] Sun J, Liu H. Green Chem, 2011, 13: 135-142 CrossRef Google Scholar

[131] Bernt WO, Borzelleca JF, Flamm G, Munro IC. Regul Toxicol Pharm, 1996, 24: S191-S197 CrossRef PubMed Google Scholar

[132] Aidoo RP, Depypere F, Afoakwa EO, Dewettinck K. Trends Food Sci Tech, 2013, 32: 84-96 CrossRef Google Scholar

[133] Mäkinen KK, Isotupa KP, Kivilompolo T, Mäkinen PL, Toivanen J, Söderling E. Caries Res, 2001, 35: 129-135 CrossRef Google Scholar

[134] Munro IC, Bernt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, Bär EA, Modderman J. Food Chem Toxicol, 1998, 36: 1139-1174 CrossRef Google Scholar

[135] Shindou T, Sasaki Y, Eguchi T, Euguchi T, Hagiwara K, Ichikawa T. J Agric Food Chem, 1989, 37: 1474-1476 CrossRef Google Scholar

[136] Kondou T. Sweetener composition. US Patent, 4,902,525, 990-02-20. Google Scholar

[137] De Cock P. Erythritol: a novel noncaloric sweetener ingredient. In: Corti A, Eds. Low-Calories Sweeteners: Present and Future. Vol 85. Basel: Karger Publishers, 1999. 110–116. Google Scholar

[138] Moon HJ, Jeya M, Kim IW, Lee JK. Appl Microbiol Biotechnol, 2010, 86: 1017-1025 CrossRef PubMed Google Scholar

[139] Yokozawa T, Kim HY, Cho EJ. J Agric Food Chem, 2002, 50: 5485-5489 CrossRef Google Scholar

[140] den Hartog GJM, Boots AW, Adam-Perrot A, Brouns F, Verkooijen IWCM, Weseler AR, Haenen GRMM, Bast A. Nutrition, 2010, 26: 449-458 CrossRef PubMed Google Scholar

[141] Livesey G. Brit J Nutrition, 2001, 85: S7-S16 CrossRef Google Scholar

  • Scheme 1

    Route for nonstop conversion of biomass feedstock into sugar alcohols (color online).

  • Scheme 2

    One-pot conversion of cellulose into sorbitol. (a) Hydrolysis of cellulose to glucose; (b) hydrogenation of glucose (aldose) to sorbitol on Pt/SBA-15 (R1) and hydrogenation of glucose (α or β anomers) to sorbitol on Ru/MCM-41 (R2); (c) conversion of α/β-anomer to aldose via ring opening.

  • Scheme 3

    Dehydration of sorbitol to isosorbide.

  • Scheme 4

    Catalytic conversion of sorbitol to alkanes (color online).

  • Scheme 5

    Conversion of sorbitol into glycols.

  • Scheme 6

    Route for the production of erythritol.

  • Table 1   Different heterogeneous catalytic systems for the synthesis and further conversion of sugar alcohols

    Substrate a)

    Catalyst b)

    Reaction condition c)

    Products and yield d)

    Ref.

    Cellulose

    16% Ni2.P/AC

    225 °C, 6 MPa, 1.5 h

    SOR (48%), PG (8%), 1,2PG (2.2%), MAN (4.7%), XYL (1.7%)

    [20]

    BMC

    16% Ni2.6P/AC

    230 °C, 5 MPa, 40 min

    SOR (62.0%), MAN (4.5), ERY (1.3%)

    [32]

    MCC

    Pt-SnOx/Al2O3

    200 °C, 6 MPa, 0.5 h

    SOR+MAN (selectivity 82.8%)

    [42]

    BMC

    Ni/C

    210 °C, 5 MPa, 6 h

    SOR (57%), MAN (6.8%), PG (1.7%), EG (8%)

    [36]

    MCC

    Ru/[Bmin]3PW12O4

    160 °C, 5 MPa, 24 h

    SOR (yield.45% Selectivity 70.3)

    [101]

    MCC

    Ni/NCC-ZSM-5

    240 °C, 4 MPa, 2.5 h

    SOR and MAN (60%)

    [37]

    Cellulose

    1% Rh-5% Ni/MC

    245 °C, 6 MPa, 30 min

    SOR (51.5%), EG (5.3%), PG (3.5%), ERY (3.4%), MAN (8.3)

    [41]

    MCC

    1% Pt-17% Ni/ZSM-5

    240 °C, 4 MPa

    SOR & MAN (76.9%), EG (2.3%)

    [40]

    Cellulose

    4% Ru/MCM-48

    200 °C, 5 MPa, 6 min

    SOR (41.8%), MAN (6.7%)

    [43]

    D-glucose

    Ru:Ni/MCM-48

    130–140 °C, 2.5 MPa, 1.5 h

    SOR (Selectivity 100%)

    [44]

    Cellulose

    Pt/RGO-433

    190 °C, 5 MPa, 24 h

    SOR (58.9%), MAN (10.1%)

    [45]

    Cellobiose

    Pt/RGO-433

    190 °C, 5 MPa, 3 h

    SOR (91.5%)

    [45]

    Cellulose

    0.4% Ru/AC

    205 °C, 50 bar, 5 h

    SOR (80%), MAN (4.6%)

    [46]

    Cellobiose

    3% RuNPs/A15

    150 °C, 40 bar, 5 h

    SOR (80%)

    [48]

    Sorbitol

    P-SO3H

    140 °C, 0.1 bar, 10 h

    ISO (87.9%)

    [52]

    Sorbitol

    ZSM-5(40)

    200 °C, 2 h

    ISO (80%)

    [51]

    Sorbitol

    Cellulose-SO3H

    200 °C, 1 h

    ISO (67%)

    [57]

    Sorbitol

    Zr-p

    210 °C, 2 h

    ISO (73%)

    [56]

    Sorbitol

    SA-SiO2

    120 °C, 10 h, vacuum

    ISO (84%)

    [55]

    Sorbitol

    Ni/ZSM-5(Cal:500)

    240 °C, 4.0 MPa, 1 h

    i-C6H14 and i-C5H12 (32.33%)

    [60]

    Sorbitol

    Pt/SiO2-Al2O3

    240 °C, 36 bar

    H/C (27%), Oxy./Comp. (29%), CO2 (35%)

    [61]

    Sorbitol

    Pt/NbOPO4

    250 °C, 4 MPa, 12 h

    HEX (55.9%), PEN (4.8%), ISO (5.3%)

    [62]

    HEM

    Ir–ReOx/SiO2+HZSM-5+H2SO4

    190 °C, 24 h

    n-C5H12 (70%)

    [100]

    Sorbitol

    Pt-Ir-ReOx/SiO2

    0.5 MPa, 453 K, 24 h

    Gasoline-ranged products (42%)

    [102]

    Sorbitol

    Ru/C (DBR)

    R1: 140 °C; R2: 250 °C, 4 MPa

    C6H14 (38.8%), C5H12 (44.1%)

    [103]

    Sorbitol

    Ru/Ca-HT

    220 °C, 4 MPa, 4 h

    Glycol (46%)

    [67]

    Sorbitol

    Ru/C

    200 °C, 4.0 MPa, 1 h

    EG (20.8%), PG (27.3%)

    [104]

    HEM

    0.4% Ru/CNT

    205 °C, 50 bar, 1 h≤

    XYL (60%)

    [105]

    HEMM

    Ru/C+HPA

    140 °C, 20 bar, 3 h

    XYL (70%–82%)

    [106]

    HEM

    Ir-ReOx/SiO2+H2SO4

    140 °C, 12 h

    XYL (79%)

    [100]

    Ar-XYL

    Ru/USY

    160 °C, 5 h

    C5 (90%)

    [107]

    Arabitol

    S-Ru:Ru

    240 °C, 10 MPa, 75 min

    ERY (10.1%), GLY (10.3%), XYL (6.4%), MAN (7.8%), SOR (6.7%)

    [70]

    Xylose

    5% Ru/C

    138 °C, 6 bar, 24 h

    C5 (20%)

    [10]

    HEM: hemicellulose; Ar-XYL: arabinoxylan. b) Cellulose-SO3H: cellulose-derived solid acid catalyst; Zr-p: porous zirconium phosphate; Cal:500: calcinated at 500 °C; HPA: hetero poly acid. c) R1&R2: duel bed reactor (DBR). d) SOR: Sorbitol; PG: propylene glycol; MAN: mannitol; XYL: xylitol; ERY: erythritol; ISO: isosorbide; EG: ethylene glycol; GLY: glycerol.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1