logo

SCIENCE CHINA Chemistry, Volume 60, Issue 11: 1425-1438(2017) https://doi.org/10.1007/s11426-017-9076-y

Functional tumor imaging based on inorganic nanomaterials

More info
  • ReceivedFeb 28, 2017
  • AcceptedMay 8, 2017
  • PublishedSep 15, 2017

Abstract

Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding their imaging efficacy, focusing on tumor-imaging nanomaterials such as metal-based and carbon-based nanomaterials and quantum dots. Inorganic nanoparticles gain excellent in vivo tumor-imaging functions based on their specific characteristics of strong near-infrared optical absorption and/or X-ray attenuation capability. The specific response signals from these novel nanomaterials can be captured using a series of imaging techniques, i.e., optical coherence tomography (OCT), X-ray computed tomography (CT) imaging, two-photon luminescence (TPL), photoacoustic tomography (PAT), magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS) and positron emission tomography (PET). In this review, we summarized the rapid development of inorganic nanomaterial applications using these analysis techniques and discussed the related safety issues of these materials.


Funded by

Ministry of Science and Technology of China(2016YFA0201600)

National Natural Science Foundation of China(21477029)

Beijing Key Laboratory of Environmental Toxicology(2015HJDL01)

State Key Laboratory of Integrated Management of Pest Insects and Rodents(ChineseIPM1613)


Acknowledgment

This work was supported by the Ministry of Science and Technology of China (2016YFA0201600), the National Natural Science Foundation of China (21477029), the Chinese Academy of Sciences (XDA09040400), Beijing Key Laboratory of Environmental Toxicology (2015HJDL01), and the State Key Laboratory of Integrated Management of Pest Insects and Rodents (ChineseIPM1613).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Tan C, Liu Z, Huang W, Zhang H. Chem Soc Rev, 2015, 44: 2615-2628 CrossRef PubMed Google Scholar

[2] Yan L, Chang YN, Zhao L, Gu Z, Liu X, Tian G, Zhou L, Ren W, Jin S, Yin W, Chang H, Xing G, Gao X, Zhao Y. Carbon, 2013, 57: 120-129 CrossRef Google Scholar

[3] Zhu W. Sci China Chem, 2016, 59: 203-204 CrossRef Google Scholar

[4] Wang L, Sun Q, Wang X, Wen T, Yin JJ, Wang P, Bai R, Zhang XQ, Zhang LH, Lu AH, Chen C. J Am Chem Soc, 2015, 137: 1947-1955 CrossRef PubMed Google Scholar

[5] Wen L, Chen L, Zheng S, Zeng J, Duan G, Wang Y, Wang G, Chai Z, Li Z, Gao M. Adv Mater, 2016, 28: 5072-5079 CrossRef PubMed Google Scholar

[6] Zhao Y, Zou C, Zhao H, Zhao L. Sci China Chem, 2016, 59: 255-263 CrossRef Google Scholar

[7] Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim SY, Choi K, Kwon IC, Kim K, Ahn CH. Angew Chem, 2008, 120: 2846-2849 CrossRef Google Scholar

[8] Charan S, Sanjiv K, Singh N, Chien FC, Chen YF, Nergui NN, Huang SH, Kuo CW, Lee TC, Chen P. Bioconjugate Chem, 2012, 23: 2173-2182 CrossRef PubMed Google Scholar

[9] Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, Martynova MG, Bystrova OA, Yakovenko IV, Ischenko AM. Int J Nanomed, 2014, 9: 273–287. Google Scholar

[10] Liu J, Zheng X, Yan L, Zhou L, Tian G, Yin W, Wang L, Liu Y, Hu Z, Gu Z, Chen C, Zhao Y. ACS Nano, 2015, 9: 696-707 CrossRef PubMed Google Scholar

[11] Li Z, Hu Y, Howard KA, Jiang T, Fan X, Miao Z, Sun Y, Besenbacher F, Yu M. ACS Nano, 2015, 10: 984–997. Google Scholar

[12] Gao F, Cai P, Yang W, Xue J, Gao L, Liu R, Wang Y, Zhao Y, He X, Zhao L, Huang G, Wu F, Zhao Y, Chai Z, Gao X. ACS Nano, 2015, 9: 4976-4986 CrossRef PubMed Google Scholar

[13] Liu Z, Tabakman S, Sherlock S, Li X, Chen Z, Jiang K, Fan S, Dai H. Nano Res, 2010, 3: 222-233 CrossRef PubMed Google Scholar

[14] Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano Res, 2008, 1: 203-212 CrossRef PubMed Google Scholar

[15] Peng X. J Opt, 2015, 44: 249-254 CrossRef Google Scholar

[16] Vonnemann J, Beziere N, Böttcher C, Riese SB, Kuehne C, Dernedde J, Licha K, von Schacky C, Kosanke Y, Kimm M, Meier R, Ntziachristos V, Haag R. Theranostics, 2014, 4: 629-641 CrossRef PubMed Google Scholar

[17] Song KH, Kim C, Cobley CM, Xia Y, Wang LV. Nano Lett, 2008, 9: 183–188. Google Scholar

[18] Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Adv Mater, 2017, 29: 1604894 CrossRef PubMed Google Scholar

[19] Pan D, Pramanik M, Senpan A, Ghosh S, Wickline SA, Wang LV, Lanza GM. Biomaterials, 2010, 31: 4088-4093 CrossRef PubMed Google Scholar

[20] Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL. Small, 2010, 6: 745-752 CrossRef PubMed Google Scholar

[21] Qian J, Li Y, Chen J, Xu J, Sun Q. J Phys Chem C, 2014, 118: 8581-8587 CrossRef Google Scholar

[22] Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang LV, Li C. Biomaterials, 2010, 31: 2617-2626 CrossRef PubMed Google Scholar

[23] Yeager D, Chen YS, Litovsky S, Emelianov S. Theranostics, 2014, 4: 36-46 CrossRef PubMed Google Scholar

[24] Weissleder R, Nahrendorf M, Pittet MJ. Nat Mater, 2014, 13: 125-138 CrossRef PubMed ADS Google Scholar

[25] Biju V. Chem Soc Rev, 2014, 43: 744-764 CrossRef PubMed Google Scholar

[26] Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX. Adv Mater, 2007, 19: 3136-3141 CrossRef PubMed Google Scholar

[27] Zhou Z, Sun Y, Shen J, Wei J, Yu C, Kong B, Liu W, Yang H, Yang S, Wang W. Biomaterials, 2014, 35: 7470-7478 CrossRef PubMed Google Scholar

[28] Toma A, Otsuji E, Kuriu Y, Okamoto K, Ichikawa D, Hagiwara A, Ito H, Nishimura T, Yamagishi H. Br J Cancer, 2005, 93: 131-136 CrossRef PubMed Google Scholar

[29] Lee JH, Sherlock SP, Terashima M, Kosuge H, Suzuki Y, Goodwin A, Robinson J, Seo WS, Liu Z, Luong R, McConnell MV, Nishimura DG, Dai H. Magn Reson Med, 2009, 62: 1497-1509 CrossRef PubMed Google Scholar

[30] Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X. J Nucl Med, 2008, 49: 1371-1379 CrossRef PubMed Google Scholar

[31] Barrett T, Kobayashi H, Brechbiel M, Choyke PL. Eur J Rad, 2006, 60: 353-366 CrossRef PubMed Google Scholar

[32] Wang J, Liu J, Liu Y, Wang L, Cao M, Ji Y, Wu X, Xu Y, Bai B, Miao Q, Chen C, Zhao Y. Adv Mater, 2016, 28: 8950-8958 CrossRef PubMed Google Scholar

[33] Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD, Wickline SA, Lanza GM. Magn Reson Med, 2005, 53: 621-627 CrossRef PubMed Google Scholar

[34] Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, Zentgraf H, Bock M, Eisenhut M, Semmler W, Kiessling F. Cancer Res, 2007, 67: 1555-1562 CrossRef PubMed Google Scholar

[35] Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS. Nano Lett, 2007, 7: 861-867 CrossRef PubMed ADS Google Scholar

[36] Tada DB, Vono LLR, Duarte EL, Itri R, Kiyohara PK, Baptista MS, Rossi LM. Langmuir, 2007, 23: 8194-8199 CrossRef PubMed Google Scholar

[37] Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP. Med Res Rev, 2004, 24: 621-638 CrossRef PubMed Google Scholar

[38] Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM, Chen YC. Nano Lett, 2007, 7: 149-154 CrossRef PubMed ADS Google Scholar

[39] Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O. J Am Chem Soc, 2007, 129: 5076-5084 CrossRef PubMed Google Scholar

[40] Liu X, Yan CH, Capobianco JA. Chem Soc Rev, 2015, 44: 1299-1301 CrossRef PubMed Google Scholar

[41] Zhou J, Liu Z, Li F. Chem Soc Rev, 2012, 41: 1323-1349 CrossRef PubMed Google Scholar

[42] Wang C, Cheng L, Liu Z. Theranostics, 2013, 3: 317-330 CrossRef PubMed Google Scholar

[43] Liu F, He X, Lei Z, Liu L, Zhang J, You H, Zhang H, Wang Z. Adv Healthc Mater, 2015, 4: 559-568 CrossRef PubMed Google Scholar

[44] Lv R, Yang P, He F, Gai S, Yang G, Dai Y, Hou Z, Lin J. Biomaterials, 2015, 63: 115-127 CrossRef PubMed Google Scholar

[45] Tian G, Zheng X, Zhang X, Yin W, Yu J, Wang D, Zhang Z, Yang X, Gu Z, Zhao Y. Biomaterials, 2015, 40: 107-116 CrossRef PubMed Google Scholar

[46] Lv R, Yang P, He F, Gai S, Li C, Dai Y, Yang G, Lin J. ACS Nano, 2015, 9: 1630-1647 CrossRef PubMed Google Scholar

[47] Zhang XD, Chen J, Min Y, Park GB, Shen X, Song SS, Sun YM, Wang H, Long W, Xie J, Gao K, Zhang L, Fan S, Fan F, Jeong U. Adv Funct Mater, 2014, 24: 1718-1729 CrossRef Google Scholar

[48] Zhou M, Song S, Melancon M, Huang Q, Wen X, Gupta S, Li C. J Nucl Med, 2013, 54: 440. Google Scholar

[49] Zhou M, Ku G, Pageon L, Li C. Nanoscale, 2014, 6: 15228-15235 CrossRef PubMed ADS Google Scholar

[50] Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, Wang C, Wang X, Liu G, Xing H, Bu W, Sun B, Liu Z. Adv Mater, 2014, 26: 1886-1893 CrossRef PubMed Google Scholar

[51] Yong Y, Cheng X, Bao T, Zu M, Yan L, Yin W, Ge C, Wang D, Gu Z, Zhao Y. ACS Nano, 2015, 9: 12451-12463 CrossRef Google Scholar

[52] Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X, Zhang X, Yong Y, Li J, Gu Z, Zhao Y. ACS Nano, 2014, 8: 6922-6933 CrossRef PubMed Google Scholar

[53] Liu J, Wang P, Zhang X, Wang L, Wang D, Gu Z, Tang J, Guo M, Cao M, Zhou H, Liu Y, Chen C. ACS Nano, 2016, 10: 4587-4598 CrossRef Google Scholar

[54] Zhang S, Sun C, Zeng J, Sun Q, Wang G, Wang Y, Wu Y, Dou S, Gao M, Li Z. Adv Mater, 2016, 28: 8927-8936 CrossRef PubMed Google Scholar

[55] Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. ACS Nano, 2013, 7: 2891-2897 CrossRef PubMed Google Scholar

[56] Yin JJ, Lao F, Fu PP, Wamer WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J, Liang XJ, Chen C. Biomaterials, 2009, 30: 611-621 CrossRef PubMed Google Scholar

[57] Liu Z, Tabakman S, Welsher K, Dai H. Nano Res, 2009, 2: 85-120 CrossRef PubMed Google Scholar

[58] Heller DA, Baik S, Eurell TE, Strano MS. Adv Mater, 2005, 17: 2793-2799 CrossRef Google Scholar

[59] Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. Nat Nanotech, 2009, 4: 773-780 CrossRef PubMed ADS Google Scholar

[60] Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. Nat Nanotech, 2007, 2: 47-52 CrossRef PubMed ADS Google Scholar

[61] Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Proc Natl Acad Sci USA, 2008, 105: 5844-5849 CrossRef PubMed ADS Google Scholar

[62] Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z. Adv Mater, 2014, 26: 5646-5652 CrossRef PubMed Google Scholar

[63] Shams H, Holt BD, Mahboobi SH, Jahed Z, Islam MF, Dahl KN, Mofrad MR. ACS Nano, 2013, 8: 188–197. Google Scholar

[64] Tong L, Liu Y, Dolash BD, Jung Y, Slipchenko MN, Bergstrom DE, Cheng JX. Nat Nanotech, 2011, 7: 56-61 CrossRef PubMed ADS Google Scholar

[65] Zhu S, Yang Q, Antaris AL, Yue J, Ma Z, Wang H, Huang W, Wan H, Wang J, Diao S, Zhang B, Li X, Zhong Y, Yu K, Hong G, Luo J, Liang Y, Dai H. Proc Natl Acad Sci USA, 2017, 114: 962-967 CrossRef PubMed Google Scholar

[66] Zhang J, Kruss S, Hilmer AJ, Shimizu S, Schmois Z, De La Cruz F, Barone PW, Reuel NF, Heller DA, Strano MS. Adv Healthc Mater, 2014, 3: 412-423 CrossRef PubMed Google Scholar

[67] Kim JH, Heller DA, Jin H, Barone PW, Song C, Zhang J, Trudel LJ, Wogan GN, Tannenbaum SR, Strano MS. Nat Chem, 2009, 1: 473-481 CrossRef PubMed ADS Google Scholar

[68] Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR. J Biomed Opt, 2009, 14: 021009 CrossRef PubMed ADS Google Scholar

[69] Huang NN, Wang HQ, Zhao JH, Lui H, Korbelik M, Zeng HS. Lasers Surg Med, 2010, 42: 638–648. Google Scholar

[70] Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z. Biomaterials, 2011, 32: 144-151 CrossRef PubMed Google Scholar

[71] Liu Z, Sun X, Nakayama-Ratchford N, Dai H. ACS Nano, 2007, 1: 50-56 CrossRef PubMed Google Scholar

[72] Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF. ACS Nano, 2009, 3: 307-316 CrossRef PubMed Google Scholar

[73] Dou R, Du Z, Bao T, Dong X, Zheng X, Yu M, Yin W, Dong B, Yan L, Gu Z. Nanoscale, 2016, 8: 11531-11542 CrossRef PubMed ADS Google Scholar

[74] Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. Nano Res, 2012, 5: 199-212 CrossRef Google Scholar

[75] Gollavelli G, Ling YC. Biomaterials, 2012, 33: 2532-2545 CrossRef PubMed Google Scholar

[76] Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Biomaterials, 2013, 34: 4786-4793 CrossRef PubMed Google Scholar

[77] Jin Y, Wang J, Ke H, Wang S, Dai Z. Biomaterials, 2013, 34: 4794-4802 CrossRef PubMed Google Scholar

[78] Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Nayak TR, Goel S, Bean J, Theuer CP, Barnhart TE, Liu Z, Cai W. ACS Nano, 2012, 6: 2361-2370 CrossRef PubMed Google Scholar

[79] Zhang W, Sun B, Zhang L, Zhao B, Nie G, Zhao Y. Nanoscale, 2011, 3: 2636-2641 CrossRef PubMed ADS Google Scholar

[80] Meng H, Xing G, Sun B, Zhao F, Lei H, Li W, Song Y, Chen Z, Yuan H, Wang X, Long J, Chen C, Liang X, Zhang N, Chai Z, Zhao Y. ACS Nano, 2010, 4: 2773-2783 CrossRef PubMed Google Scholar

[81] Liang XJ, Meng H, Wang Y, He H, Meng J, Lu J, Wang PC, Zhao Y, Gao X, Sun B, Chen C, Xing G, Shen D, Gottesman MM, Wu Y, Yin JJ, Jia L. Proc Natl Acad Sci USA, 2010, 107: 7449-7454 CrossRef PubMed ADS Google Scholar

[82] Kang S, Zhou G, Yang P, Liu Y, Sun B, Huynh T, Meng H, Zhao L, Xing G, Chen C, Zhao Y, Zhou R. Proc Natl Acad Sci USA, 2012, 109: 15431-15436 CrossRef PubMed ADS Google Scholar

[83] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Science, 2005, 307: 538-544 CrossRef PubMed ADS Google Scholar

[84] Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Nano Lett, 2008, 8: 2599-2606 CrossRef PubMed ADS Google Scholar

[85] Ferro-Flores G, Ocampo-Garcia BE, Santos-Cuevas CL, Morales-Avila E, Azorin-Vega E. Curr Med Chem, 2014, 21: 124–138. Google Scholar

[86] Chen F, Gerion D. Nano Lett, 2004, 4: 1827-1832 CrossRef ADS Google Scholar

[87] Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X. Nano Lett, 2006, 6: 669-676 CrossRef PubMed ADS Google Scholar

[88] Cai W, Chen K, Li ZB, Gambhir SS, Chen X. J Nucl Med, 2007, 48: 1862-1870 CrossRef PubMed Google Scholar

[89] Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A. J Control Release, 2007, 124: 28-34 CrossRef PubMed Google Scholar

[90] Xie R, Chen K, Chen X, Peng X. Nano Res, 2008, 1: 457-464 CrossRef Google Scholar

[91] Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP. J Am Chem Soc, 2007, 129: 11318-11319 CrossRef PubMed Google Scholar

[92] Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Angew Chem Int Ed, 2015, 54: 5360-5363 CrossRef PubMed Google Scholar

[93] Erogbogbo F, Yong KT, Roy I, Xu GX, Prasad PN, Swihart MT. ACS Nano, 2008, 2: 873-878 CrossRef PubMed Google Scholar

[94] Zhang X, Wang H, Wang H, Zhang Q, Xie J, Tian Y, Wang J, Xie Y. Adv Mater, 2014, 26: 4438-4443 CrossRef PubMed Google Scholar

[95] Wang L, Chen C. Toxicol Appl Pharm, 2016, 299: 30-40 CrossRef PubMed Google Scholar

[96] Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C. Biochimica Biophysica Acta (BBA)-Gen Subjects, 2016, 1860: 2844-2855 CrossRef PubMed Google Scholar

[97] Chen R, Chen C. Nanotoxicity. In: Xie Y, Eds. The Nanobiotechnology Handbook. New York: Taylor & Francis Group, 2012. 599–620. Google Scholar

[98] Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, Chen F, Zhao Y, Chang YZ, Chen C. Biomaterials, 2015, 61: 307-315 CrossRef PubMed Google Scholar

[99] Jiang X, Wang L, Wang J, Chen C. Appl Biochem Biotechnol, 2012, 166: 1533-1551 CrossRef PubMed Google Scholar

[100] Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Wu X, Zhao Y, Li Y, Chen C. Biomaterials, 2010, 31: 7606-7619 CrossRef PubMed Google Scholar

[101] Wang L, Li J, Pan J, Jiang X, Ji Y, Li Y, Qu Y, Zhao Y, Wu X, Chen C. J Am Chem Soc, 2013, 135: 17359-17368 CrossRef PubMed Google Scholar

[102] Chen R, Ling D, Zhao L, Wang S, Liu Y, Bai R, Baik S, Zhao Y, Chen C, Hyeon T. ACS Nano, 2015, 9: 12425-12435 CrossRef Google Scholar

[103] Chen R, Zhang L, Ge C, Tseng MT, Bai R, Qu Y, Beer C, Autrup H, Chen C. Chem Res Toxicol, 2015, 28: 440-450 CrossRef PubMed Google Scholar

[104] Meng L, Jiang A, Chen R, Li C, Wang L, Qu Y, Wang P, Zhao Y, Chen C. Toxicology, 2013, 313: 49-58 CrossRef PubMed Google Scholar

[105] Liu Y, Zhao Y, Sun B, Chen C. Acc Chem Res, 2013, 46: 702-713 CrossRef PubMed Google Scholar

[106] Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C. Proc Natl Acad Sci USA, 2011, 108: 16968-16973 CrossRef PubMed ADS Google Scholar

[107] Zavaleta C, De la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS. Nano Lett, 2008, 8: 2800-2805 CrossRef PubMed ADS Google Scholar

[108] Bianco A. Angew Chem Int Ed, 2013, 52: 4986-4997 CrossRef PubMed Google Scholar

[109] Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Grácio JJA, Dash D. ACS Nano, 2012, 6: 2731-2740 CrossRef PubMed Google Scholar

[110] Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q. Carbon, 2011, 49: 986-995 CrossRef Google Scholar

[111] Duch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC, Mutlu GM. Nano Lett, 2011, 11: 5201-5207 CrossRef PubMed Google Scholar

[112] Jaiswal A, Ghosh SS, Chattopadhyay A. Chem Commun, 2012, 48: 407-409 CrossRef PubMed Google Scholar

[113] Le TC, Yin H, Chen R, Chen Y, Zhao L, Casey PS, Chen C, Winkler DA. Small, 2016, 12: 3568-3577 CrossRef PubMed Google Scholar

[114] Liu Z, Peng R. Eur J Nucl Med Mol Imag, 2010, 37(Suppl 1): 147-163 CrossRef PubMed Google Scholar

  • Figure 1

    Photoacoustic tomography imaging of a tumor by gold nanoparticles in the mouse. (a) PA images and (b) quantified PA signal of the tumorous sites of mice receiving treatments with different combinations of λ=405 nm laser irradiation and intravenous delivery of dAuNPs (100 μL, 2 mg/mL) [18] (color online).

  • Figure 2

    T1-weighted MRI images for the tumor diagnosis of Au@SiO2(Gd)@PDC@HA nanocomposites (NCs). (a) T1-weighted MRI images of NCs with different Gd concentrations. (b) T1-weighted MRI images of Gd-DTPA with different Gd concentrations. (c) Coronal T1-weighted MRI images of tumor-bearing mice pre- and post-injection of NCs. The red dashed circles represent the tumor region. Red arrowheads indicate the clear tumor margins after injection. (d) Transverse T1-weighted MRI images of tumor-bearing mice pre- and post-injection of NCs. Red arrowheads indicate the clear tumor margins after injection [32] (color online).

  • Figure 3

    Imaging of SWCNT-PEG after intratumoral injection. (a) A schematic plot shows the NIR-II fluorescent imaging setup. (b) NIR-II fluorescent imaging of a tumor-bearing mouse taken at different time points after injection with SWCNT-PEG. (c) MR imaging of a tumor-bearing mouse taken at different time points after injection with PEGylated SWCNT solution into the foot sole. The white, dashed circles highlight the sentinel lymph node. (d) T2-MR intensities of PEGylated SWCNTs in the primary tumor and sentinel lymph node. (e) The Raman mapping of lymph nodes collected from mice with or without injection of SWCNT-PEG into their foot tumor by SWCNT-characteristic Raman signals. (f) Raman spectra recorded from the Raman mapping images at positions highlighted in (e) [62] (color online).

  • Figure 4

    In vivo PET/CT imaging of 64Cu-labeled GO conjugates in 4T1 murine breast tumor-bearing mice. (a) Serial coronal PET images of 4T1 tumor-bearing mice at diffrent time points postinjection of 64Cu-NOTA-GO-TRC105, 64Cu-NOTA-GO, or 64Cu-NOTA-GO-TRC105 after a preinjected blocking dose of TRC105. Tumors are indicated by arrowheads. (b) Representative PET/CT images of 64Cu-NOTA-GO-TRC105 in 4T1 tumor-bearing mice at 16 h postinjection [78] (color online).

  • Figure 5

    (a) In vivo optical imaging for the comparison of the sizes of cisplatin-sensitive (CP-s) and cisplatin-resistant (CP-r) prostate carcinoma that expressed luciferase (PC-3-luc) tumors treated with either [Gd/C82(OH)22]n NPs (20 μM), or cisplatin or cisplatin plus nanoparticles (cisplatin+NPs) or saline solution alone as a control. (b) MRI images of CP-s and CP-r PC-3-luc tumors after 4 weeks of various treatments described in (a). Right: CP-s tumor; left: CP-r tumor [81]. (c) The protective effects of three fullerene derivatives Gd/C82(OH)22, C60(OH)22, and C60(C(COOH)2)2 against H2O2-induced mitochondrial damage in A549 cells, and rat brain capillary endothelial cells (rBCEC). The cells were treated with 100 mM of the fullerene derivatives before incubation with 50 mM H2O2. Aggregation of the dye, JC-1 (red fluorescence), indicated the integrity of the mitochondrial membrane [56] (color online).

  • Figure 6

    One-photon and two-photon confocal fluorescent images of HepG2 cells co-stained with (A) DiI, FDA, g-C3N4 QDs, and (B) DiI, FDA, DAPI, respectively. In detail, (a1, b1) one-photon fluorescence of DiI; (a2, b2) one-photon fluorescence of FDA; (a3) one-photon fluorescence of the g-C3N4 quantum dots; (a4) two-photon fluorescence of the g-C3N4 quantum dots; (a5) merged images of (a1–a3); (a6) merged images of (a1, a2) and (a4); (b3) one-photon fluorescence of DAPI; (b4) two-photon fluorescence of DAPI; (b5) merged images of (b1–b3); (b6) merged images of (b1, b2) and (b4) [94] (color online).

  • Table 1   Typical multi-modality imaging tests based on different nanomaterials

    Nanomaterials types

    Surface coatings

    Imaging types

    Toxicity

    Ref.

    Gold nanoparticles

    Cy5.5-Gly-Po-Leu-Gly-Val-Arg-Gly-Cys-(amide)

    NIR fluorescence in mice

    No significant toxicity in HepG2 cells

    [7]

    Gold nanorods

    Anti-EGFR (epidermal growth factor receptor)

    TPL imaging in cells;

    NIR imaging in mice

    No significant toxicity in CAL 27 cells

    [8]

    Superparamagnetic iron-oxide nanoparticles (SPIONs)

    EGF (epidermal growth factor)

    MRI in rats

    No significant toxicity in C6 glioma cells

    [9]

    Bi2S3

    Tween-20

    MOST, CT in mice

    No significant toxicity in 4T1 cells, blood routine, blood biochemistry, pathology

    [10]

    Bi2Se3

    PVP (polyvinyl pyrrolidone), PDA (polydopamine), HAS (human serum albumin)

    CT in mice

    No significant toxicity in HeLa cells, blood routine, blood biochemistry, pathology

    [11]

    [64Cu]CuS

    BSA (bovine serum albumin)

    PET in mice

    Renal clearance

    [12]

    SWCNTs

    Erbitux, cyclic arginine-glycine-aspartic, anti-CEA (carcino embryonic antigen), Rituxan, Herceptin

    Raman in mice

    N/D

    [13]

    GO (graphene oxide)

    PEG (poly(ethylene) glycol)

    NIR in cells

    No significant toxicity in Raji B-cells

    [14]

    QDs-CdSe/ZnS

    Peptide

    Fluorescence in cells

    No significant toxicity in HeLa cells

    [15]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1