logo

SCIENCE CHINA Chemistry, Volume 61, Issue 3: 251-265(2018) https://doi.org/10.1007/s11426-017-9122-3

Total chemical and semisynthetic approaches for the preparation of ubiquitinated proteins and their applications

More info
  • ReceivedJul 6, 2017
  • AcceptedAug 15, 2017
  • PublishedSep 18, 2017

Abstract

Protein ubiquitination is an important post-translational modification (PTM) in eukaryotic organisms that regulates a variety of cellular processes, such as protein degradation, signal transduction, apoptosis, and DNA damage tolerance. To decipher mechanistically the diverse biological functions of ubiquitination, homogeneous ubiquitinated proteins are greatly needed. Although direct isolation from cell source and in vitro enzymatic methods can be used to produce such proteins, these methods often suffer from problems of low yield or heterogeneous products. Comparably, total chemical and semisynthetic approaches offer good alternatives to produce the ubiquitinated proteins with high purity and selectivity. This review summarizes the recent developments of protein ubiquitination strategies and the use of the synthesized proteins to help garner structural and functional insight into the inner workings of the ubiquitin system.


Funded by

ETPL of A*star(ETPL-QP-19-06)


Acknowledgment

This work was supported by Exploit Technologies Pte Ltd of Agency for Science, Technology and Research (A*Star) of Singapore (ETPL-QP-19-06).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Walsh CT, Garneau-Tsodikova S, Gatto GJ. Angew Chem Int Ed, 2005, 44: 7342-7372 CrossRef PubMed Google Scholar

[2] Swatek KN, Komander D. Cell Res, 2016, 26: 399-422 CrossRef PubMed Google Scholar

[3] Li W, Ye Y. Cell Mol Life Sci, 2008, 65: 2397-2406 CrossRef PubMed Google Scholar

[4] Hershko A, Ciechanover A. Annu Rev Biochem, 1998, 67: 425-479 CrossRef Google Scholar

[5] Chen ZJ, Sun LJ. Mol Cell, 2009, 33: 275-286 CrossRef PubMed Google Scholar

[6] Komander D, Rape M. Annu Rev Biochem, 2012, 81: 203-229 CrossRef PubMed Google Scholar

[7] Komander D, Clague MJ, Urbé S. Nat Rev Mol Cell Biol, 2009, 10: 550-563 CrossRef PubMed Google Scholar

[8] Mevissen TET, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SMV, Ovaa H, Komander D. Cell, 2013, 154: 169-184 CrossRef PubMed Google Scholar

[9] Komander D. Conjugation and Deconjugation of Ubiquitin Family Modifiers. In: New York: Subcellular Biochemistry Springer, 2010. 69–87. Google Scholar

[10] Hemantha HP, Brik A. BioOrg Medicinal Chem, 2013, 21: 3411-3420 CrossRef PubMed Google Scholar

[11] Merrifield RB. J Am Chem Soc, 1963, 85: 2149-2154 CrossRef Google Scholar

[12] Dawson PE, Kent SBH. Annu Rev Biochem, 2000, 69: 923-960 CrossRef Google Scholar

[13] Schnolzer M, Kent SBH. Science, 1992, 256: 221-225 CrossRef ADS Google Scholar

[14] Liu CF, Tam JP. Proc Natl Acad Sci USA, 1994, 91: 6584-6588 CrossRef Google Scholar

[15] Zhang Y, Xu C, Lam HY, Lee CL, Li X. Proc Natl Acad Sci USA, 2013, 110: 6657-6662 CrossRef PubMed ADS Google Scholar

[16] Bode JW, Fox RM, Baucom KD. Angew Chem Int Ed, 2006, 45: 1248-1252 CrossRef PubMed Google Scholar

[17] Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L. Angew Chem Int Ed, 2011, 50: 7645-7649 CrossRef PubMed Google Scholar

[18] Fang GM, Wang JX, Liu L. Angew Chem Int Ed, 2012, 51: 10347-10350 CrossRef PubMed Google Scholar

[19] Huang YC, Fang GM, Liu L. Nat Sci Rev, 2016, 3: 107-116 CrossRef Google Scholar

[20] Dawson PE, Muir TW, Clark-Lewis I, Kent SBH. Science, 1994, 266: 776-779 CrossRef ADS Google Scholar

[21] Li H, Dong S. Sci China Chem, 2017, 60: 201-213 CrossRef Google Scholar

[22] Yan LZ, Dawson PE. J Am Chem Soc, 2001, 123: 526-533 CrossRef Google Scholar

[23] Wong CTT, Tung CL, Li X. Mol BioSyst, 2013, 9: 826-833 CrossRef PubMed Google Scholar

[24] Pasunooti KK, Yang R, Banerjee B, Yap T, Liu CF. Org Lett, 2016, 18: 2696-2699 CrossRef PubMed Google Scholar

[25] Wan Q, Danishefsky SJ. Angew Chem Int Ed, 2007, 46: 9248-9252 CrossRef PubMed Google Scholar

[26] Muir TW, Sondhi D, Cole PA. Proc Natl Acad Sci USA, 1998, 95: 6705-6710 CrossRef Google Scholar

[27] He Q, Li J, Qi Y, Wang Z, Huang Y, Liu L. Sci China Chem, 2017, 60: 621-627 CrossRef Google Scholar

[28] Chatterjee C, McGinty RK, Pellois JP, Muir TW. Angew Chem Int Ed, 2007, 46: 2814-2818 CrossRef PubMed Google Scholar

[29] McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW. Nature, 2008, 453: 812-816 CrossRef PubMed ADS Google Scholar

[30] Pan M, Gao S, Zheng Y, Tan X, Lan H, Tan X, Sun D, Lu L, Wang T, Zheng Q, Huang Y, Wang J, Liu L. J Am Chem Soc, 2016, 138: 7429-7435 CrossRef PubMed Google Scholar

[31] Li J, He Q, Liu Y, Liu S, Tang S, Li C, Sun D, Li X, Zhou M, Zhu P, Bi G, Zhou Z, Zheng JS, Tian C. ChemBioChem, 2017, 18: 176-180 CrossRef PubMed Google Scholar

[32] Qi YK, He QQ, Ai HS, Guo J, Li JB. Chem Commun, 2017, 53: 4148-4151 CrossRef PubMed Google Scholar

[33] Xie RL, Xu L, Li JB, Chu GC, Wang T, Huang YC, Li YM. Eur J Org Chem, 2016, 2016: 2665-2670 CrossRef Google Scholar

[34] Weller CE, Huang W, Chatterjee C. ChemBioChem, 2014, 15: 1263-1267 CrossRef PubMed Google Scholar

[35] Weller CE, Dhall A, Ding F, Linares E, Whedon SD, Senger NA, Tyson EL, Bagert JD, Li X, Augusto O, Chatterjee C. Nat Commun, 2016, 7: 12979 CrossRef PubMed ADS Google Scholar

[36] Yang R, Pasunooti KK, Li F, Liu XW, Liu CF. J Am Chem Soc, 2009, 131: 13592-13593 CrossRef PubMed Google Scholar

[37] Yang R, Pasunooti KK, Li F, Liu XW, Liu CF. Chem Commun, 2010, 46: 7199-7201 CrossRef PubMed Google Scholar

[38] Ajish Kumar KS, Haj-Yahya M, Olschewski D, Lashuel HA, Brik A. Angew Chem Int Ed, 2009, 48: 8090-8094 CrossRef PubMed Google Scholar

[39] Kumar KSA, Spasser L, Erlich LA, Bavikar SN, Brik A. Angew Chem Int Ed, 2010, 49: 9126-9131 CrossRef PubMed Google Scholar

[40] Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A. Angew Chem Int Ed, 2011, 50: 6137-6141 CrossRef PubMed Google Scholar

[41] Merkx R, de Bruin G, Kruithof A, van den Bergh T, Snip E, Lutz M, El Oualid F, Ovaa H. Chem Sci, 2013, 4: 4494-4498 CrossRef Google Scholar

[42] Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, Riechmann L, Chin JW. J Am Chem Soc, 2011, 133: 10708-10711 CrossRef PubMed Google Scholar

[43] Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. Nat Chem Biol, 2010, 6: 750-757 CrossRef PubMed Google Scholar

[44] Castañeda C, Liu J, Chaturvedi A, Nowicka U, Cropp TA, Fushman D. J Am Chem Soc, 2011, 133: 17855-17868 CrossRef PubMed Google Scholar

[45] Yang R, Bi X, Li F, Cao Y, Liu CF. Chem Commun, 2014, 50: 7971-7974 CrossRef Google Scholar

[46] Bi X, Yang R, Feng X, Rhodes D, Liu CF. Org Biomol Chem, 2016, 14: 835-839 CrossRef PubMed Google Scholar

[47] McGinty RK, Köhn M, Chatterjee C, Chiang KP, Pratt MR, Muir TW. ACS Chem Biol, 2009, 4: 958-968 CrossRef PubMed Google Scholar

[48] Fierz B, Kilic S, Hieb AR, Luger K, Muir TW. J Am Chem Soc, 2012, 134: 19548-19551 CrossRef PubMed Google Scholar

[49] Chatterjee C, McGinty RK, Fierz B, Muir TW. Nat Chem Biol, 2010, 6: 267-269 CrossRef PubMed Google Scholar

[50] Chen J, Ai Y, Wang J, Haracska L, Zhuang Z. Nat Chem Biol, 2010, 6: 270-272 CrossRef PubMed Google Scholar

[51] Valkevich EM, Guenette RG, Sanchez NA, Chen Y, Ge Y, Strieter ER. J Am Chem Soc, 2012, 134: 6916-6919 CrossRef PubMed Google Scholar

[52] Trang VH, Valkevich EM, Minami S, Chen YC, Ge Y, Strieter ER. Angew Chem Int Ed, 2012, 51: 13085-13088 CrossRef PubMed Google Scholar

[53] Meledin R, Mali SM, Singh SK, Brik A. Org Biomol Chem, 2016, 14: 4817-4823 CrossRef PubMed Google Scholar

[54] Kawakami T, Mishima Y, Hojo H, Suetake I. J Pept Sci, 2017, 23: 532-538 CrossRef PubMed Google Scholar

[55] Weikart ND, Mootz HD. ChemBioChem, 2010, 11: 774-777 CrossRef PubMed Google Scholar

[56] Long L, Furgason M, Yao T. Methods, 2014, 70: 134-138 CrossRef PubMed Google Scholar

[57] Morgan RE, Chudasama V, Moody P, Smith MEB, Caddick S. Org Biomol Chem, 2015, 13: 4165-4168 CrossRef PubMed Google Scholar

[58] Lewis YE, Abeywardana T, Lin YH, Galesic A, Pratt MR. ACS Chem Biol, 2016, 11: 931-942 CrossRef PubMed Google Scholar

[59] Eger S, Scheffner M, Marx A, Rubini M. J Am Chem Soc, 2010, 132: 16337-16339 CrossRef PubMed Google Scholar

[60] Weikart ND, Sommer S, Mootz HD. Chem Commun, 2012, 48: 296-298 CrossRef PubMed Google Scholar

[61] Li X, Fekner T, Ottesen JJ, Chan MK. Angew Chem Int Ed, 2009, 48: 9184-9187 CrossRef PubMed Google Scholar

[62] Bi X, Pasunooti KK, Tareq AH, Takyi-Williams J, Liu CF. Org Biomol Chem, 2016, 14: 5282-5285 CrossRef Google Scholar

[63] Stanley M, Virdee S. ChemBioChem, 2016, 17: 1472-1480 CrossRef PubMed Google Scholar

[64] Yang K, Li G, Gong P, Gui W, Yuan L, Zhuang Z. ChemBioChem, 2016, 17: 995-998 CrossRef PubMed Google Scholar

[65] D’Arcy P, Wang X, Linder S. Pharmacol Ther, 2015, 147: 32-54 CrossRef PubMed Google Scholar

[66] Madrzak J, Fiedler M, Johnson CM, Ewan R, Knebel A, Bienz M, Chin JW. Nat Commun, 2015, 6: 6718 CrossRef ADS Google Scholar

[67] Ohayon S, Spasser L, Aharoni A, Brik A. J Am Chem Soc, 2012, 134: 3281-3289 CrossRef PubMed Google Scholar

[68] Singh SK, Sahu I, Mali SM, Hemantha HP, Kleifeld O, Glickman MH, Brik A. J Am Chem Soc, 2016, 138: 16004-16015 CrossRef PubMed Google Scholar

[69] Ekkebus R, Flierman D, Geurink PP, Ovaa H. Curr Opin Chem Biol, 2014, 23: 63-70 CrossRef PubMed Google Scholar

[70] Gopinath P, Ohayon S, Nawatha M, Brik A. Chem Soc Rev, 2016, 45: 4171-4198 CrossRef PubMed Google Scholar

[71] Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL. EMBO J, 2001, 20: 5187-5196 CrossRef Google Scholar

[72] Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM. Chem Biol, 2002, 9: 1149-1159 CrossRef Google Scholar

[73] Whedon SD, Markandeya N, Rana ASJB, Weller CE, Senger NA, Turecek F, Strieter ER, Chatterjee C. J Am Chem Soc, 2016, 138: 13774-13777 CrossRef PubMed Google Scholar

[74] Li G, Liang Q, Gong P, Tencer AH, Zhuang Z. Chem Commun, 2014, 50: 216-218 CrossRef PubMed Google Scholar

[75] Haj-Yahya N, Hemantha HP, Meledin R, Bondalapati S, Seenaiah M, Brik A. Org Lett, 2014, 16: 540-543 CrossRef PubMed Google Scholar

[76] Gao S, Pan M, Zheng Y, Huang Y, Zheng Q, Sun D, Lu L, Tan X, Tan X, Lan H, Wang J, Wang T, Wang J, Liu L. J Am Chem Soc, 2016, 138: 14497-14502 CrossRef Google Scholar

[77] Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. Science, 2016, 351: 725-728 CrossRef PubMed ADS Google Scholar

[78] Singh RK, Sundar A, Fushman D. Angew Chem Int Ed, 2014, 53: 6120-6125 CrossRef PubMed Google Scholar

[79] Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. Nat Chem Biol, 2011, 7: 113-119 CrossRef PubMed Google Scholar

[80] Yang K, Gong P, Gokhale P, Zhuang Z. ACS Chem Biol, 2014, 9: 1685-1691 CrossRef PubMed Google Scholar

[81] Meier F, Abeywardana T, Dhall A, Marotta NP, Varkey J, Langen R, Chatterjee C, Pratt MR. J Am Chem Soc, 2012, 134: 5468-5471 CrossRef PubMed Google Scholar

[82] Abeywardana T, Lin YH, Rott R, Engelender S, Pratt MR. Chem Biol, 2013, 20: 1207-1213 CrossRef PubMed Google Scholar

[83] Haj-Yahya M, Fauvet B, Herman-Bachinsky Y, Hejjaoui M, Bavikar SN, Vedhanarayanan Karthikeyan S, Ciechanover A, Lashuel HA, Brik A. Proc Natl Acad Sci USA, 2013, 110: 17726-17731 CrossRef PubMed ADS Google Scholar

[84] Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, Campbell SL. Nat Struct Mol Biol, 2013, 20: 46-52 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1