logo

SCIENCE CHINA Chemistry, Volume 61, Issue 3: 266-275(2018) https://doi.org/10.1007/s11426-017-9127-y

The designing strategies of graphene-based peroxidase mimetic materials

More info
  • ReceivedJul 5, 2017
  • AcceptedAug 24, 2017
  • PublishedDec 27, 2017

Abstract

Natural enzymes have been praised highly as ideal catalysts, presumably owing to their remarkable advantages of high efficiency, high selectivity, and mild reaction conditions. The reports of chemical simulation and systematic synthesis of natural enzymes such as peroxidase (POD) are rare because of their complex biological structures. POD represents a large family of oxidoreductases and offers a wide range of applications in many fields of science. Recent advance in the fusion of nanomaterial, catalysis, and biochemistry has inspired the development of artificial enzymes implemented with desired catalytic features of natural enzymes. Herein, we review the redox chemistry of POD and compare its catalytic performance to graphene-based nanomaterials (G-NMs) as POD mimetic nanoenzymes bases on catalytic center, binding site, and carrier function. Based on the viewpoints of stereo chemistry and molecular kinetic and dynamics in heterogeneous system, we evaluate and compare the suitability of different NMs as artificial enzyme constituent. We propose that reevaluates design strategies of graphene-based peroxidase (G-POD) mimetic materials and emphasizes on their selectivity (role as catalytic center, binding site, or carrier) is of uttermost.


Funded by

Ministry of Science and Technology of Taiwan(MOST104-2113-M-007-008-MY3)

National Tsing Hua University(Foxconn Company Scholarship)


Acknowledgment

This work was supported by the Ministry of Science and Technology of Taiwan (MOST104-2113-M-007-008-MY3), and the Taiwan Tsing Hua University (Foxconn Company Scholarship).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Wolfenden R, Snider MJ. Acc Chem Res, 2001, 34: 938-945 CrossRef Google Scholar

[2] Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. Science, 2004, 303: 186-195 CrossRef ADS Google Scholar

[3] Breslow R. Chem Soc Rev, 1972, 1: 553-580 CrossRef Google Scholar

[4] Tabushi I. Acc Chem Res, 1982, 15: 66-72 CrossRef Google Scholar

[5] Breaker RR, Joyce GF. Chem Biol, 1994, 1: 223-229 CrossRef Google Scholar

[6] Agostini E, Hernández-Ruiz J, Arnao MB, Milrad SR, Tigier HA, Acosta M. Biotechnol Appl Biochem, 2002, 35: 1 CrossRef Google Scholar

[7] Friedle S, Reisner E, Lippard SJ. Chem Soc Rev, 2010, 39: 2768-2779 CrossRef PubMed Google Scholar

[8] Veitch NC. Phytochemistry, 2004, 65: 249-259 CrossRef Google Scholar

[9] Seibert E, Tracy TS. Enzyme Kinetics in Drug Metabolism. Clifton: Humana Press, 2017. 9‒22. Google Scholar

[10] Zhou Y, Wang M, Xu Z, Ni C, Yin H, Ai S. Biosens Bioelectron, 2014, 54: 244-250 CrossRef PubMed Google Scholar

[11] Pauling L. Nature, 1948, 161: 707-709 CrossRef ADS Google Scholar

[12] Cramer F, Kampe W. J Am Chem Soc, 1965, 87: 1115-1120 CrossRef Google Scholar

[13] Wang GL, Xu X, Wu X, Cao G, Dong Y, Li Z. J Phys Chem C, 2014, 118: 28109-28117 CrossRef Google Scholar

[14] Zheng X, Zhu Q, Song H, Zhao X, Yi T, Chen H, Chen X. ACS Appl Mater Interf, 2015, 7: 3480-3491 CrossRef PubMed Google Scholar

[15] Takagishi T, Klotz IM. Biopolymers, 1972, 11: 483-491 CrossRef PubMed Google Scholar

[16] Klotz IM, Royer GP, Scarpa IS. Proc Natl Acad Sci USA, 1971, 68: 263-264 CrossRef Google Scholar

[17] Clarke JR, Marquardt RR, Oosterveld A, Frohlich AA, Madrid FJ, Dawood M. J Agric Food Chem, 1993, 41: 1784-1789 CrossRef Google Scholar

[18] Schoemaker HE, Piontek K. Pure Appl Chem, 1996, 68: 2089-2096 CrossRef Google Scholar

[19] Wan X, Huang Y, Chen Y. Acc Chem Res, 2012, 45: 598-607 CrossRef PubMed Google Scholar

[20] Zhao R, Zhao X, Gao X. Chem Eur J, 2015, 21: 960-964 CrossRef PubMed Google Scholar

[21] Park KS, Kim MI, Cho DY, Park HG. Small, 2011, 7: 1521-1525 CrossRef PubMed Google Scholar

[22] Wang Q, Lei J, Deng S, Zhang L, Ju H. Chem Commun, 2013, 49: 916-918 CrossRef PubMed Google Scholar

[23] Bhabak KP, Mugesh G. Acc Chem Res, 2010, 43: 1408-1419 CrossRef PubMed Google Scholar

[24] Bonar-Law RP, Sanders JKM. J Am Chem Soc, 1995, 117: 259-271 CrossRef Google Scholar

[25] Tabushi I, Shimizu N, Sugimoto T, Shiozuka M, Yamamura K. J Am Chem Soc, 1977, 99: 7100-7102 CrossRef Google Scholar

[26] Li R, Zhen M, Guan M, Chen D, Zhang G, Ge J, Gong P, Wang C, Shu C. Biosens Bioelectron, 2013, 47: 502-507 CrossRef PubMed Google Scholar

[27] Liu S, Wang L, Zhai J, Luo Y, Sun X. Anal Methods, 2011, 3: 1475-1477 CrossRef Google Scholar

[28] Safavi A, Sedaghati F, Shahbaazi H, Farjami E. RSC Adv, 2012, 2: 7367-7370 CrossRef Google Scholar

[29] Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y. Chem Commun, 2011, 47: 6695-6697 CrossRef PubMed Google Scholar

[30] Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X. Chem Eur J, 2010, 16: 3617-3621 CrossRef PubMed Google Scholar

[31] Cuevas F, Di Stefano S, Magrans JO, Prados P, Mandolini L, de Mendoza J. Chem Eur J, 2000, 6: 3228-3234 CrossRef Google Scholar

[32] Lin Y, Ren J, Qu X. Acc Chem Res, 2014, 47: 1097-1105 CrossRef PubMed Google Scholar

[33] Zhang LN, Deng HH, Lin FL, Xu XW, Weng SH, Liu AL, Lin XH, Xia XH, Chen W. Anal Chem, 2014, 86: 2711-2718 CrossRef PubMed Google Scholar

[34] Wei H, Wang E. Chem Soc Rev, 2013, 42: 6060-6093 CrossRef PubMed Google Scholar

[35] Liu G, Zhang X, Zhou J, Wang A, Wang J, Jin R, Lv H. Bioresource Tech, 2013, 149: 503-508 CrossRef PubMed Google Scholar

[36] Sun W, Ju X, Zhang Y, Sun X, Li G, Sun Z. ElectroChem Commun, 2013, 26: 113-116 CrossRef Google Scholar

[37] Wang Z, Lv X, Weng J. Carbon, 2013, 62: 51-60 CrossRef Google Scholar

[38] Zhang B, He Y, Liu B, Tang D. Anal Chim Acta, 2014, 851: 49-56 CrossRef PubMed Google Scholar

[39] Chen W, Liu GC, Ouyang J, Gao MJ, Liu B, Zhao YD. Sci China Chem, 2017, 60: 721-729 CrossRef Google Scholar

[40] al-Kassim L, Taylor KE, Nicell JA, Bewtra JK, Biswas N. J Chem Technol Biotechnol, 1994, 61: 179-182 CrossRef PubMed Google Scholar

[41] O’Brien PJ. Chem-Biol Interact, 2000, 129: 113-139 CrossRef Google Scholar

[42] Green MT, Dawson JH, Gray HB. Science, 2004, 304: 1653-1656 CrossRef PubMed ADS Google Scholar

[43] Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL. NeuroBiol Aging, 2008, 29: 117-128 CrossRef PubMed Google Scholar

[44] Aitken MD, Massey IJ, Chen T, Heck PE. Water Res, 1994, 28: 1879-1889 CrossRef Google Scholar

[45] Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Jung MY, Kim SJ, Gwak JH, Hong H, Si OJ, Lee SH, Madsen EL, Rhee SK. Proc Natl Acad Sci USA, 2016, 113: 7888-7893 CrossRef PubMed Google Scholar

[46] Chen X, Su B, Cai Z, Chen X, Oyama M. Sensors Actuat B-Chem, 2014, 201: 286-292 CrossRef Google Scholar

[47] Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nat Nanotech, 2007, 2: 577-583 CrossRef PubMed ADS Google Scholar

[48] He W, Wu X, Liu J, Hu X, Zhang K, Hou S, Zhou W, Xie S. Chem Mater, 2010, 22: 2988-2994 CrossRef Google Scholar

[49] Zhan L, Li CM, Wu WB, Huang CZ. Chem Commun, 2014, 50: 11526-11528 CrossRef PubMed Google Scholar

[50] Chen X, Zhai N, Snyder JH, Chen Q, Liu P, Jin L, Zheng Q, Lin F, Hu J, Zhou H. Anal Methods, 2015, 7: 1951-1957 CrossRef Google Scholar

[51] Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M, Anderson GJ, Wei J, Zhao Y, Nie G. Biomaterials, 2011, 32: 1611-1618 CrossRef PubMed Google Scholar

[52] Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. Chem Commun, 2010, 46: 2736-2738 CrossRef PubMed Google Scholar

[53] Yoshihisa Y, Zhao QL, Hassan MA, Wei ZL, Furuichi M, Miyamoto Y, Kondo T, Shimizu T. Free Radical Res, 2011, 45: 326-335 CrossRef PubMed Google Scholar

[54] Carmel-Harel O, Storz G. Annu Rev Microbiol, 2000, 54: 439-461 CrossRef Google Scholar

[55] Ruzgas T, Csoregi E, Katakis I, Kenausis G, Gorton L. J Mol Recognit, 1996, 9: 480–484. Google Scholar

[56] Garg B, Ling YC. Chem Commun, 2015, 51: 8809-8812 CrossRef PubMed Google Scholar

[57] Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch E, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Woelz J, Wycisk P, Zennegg M. Environ Sci Pollut Res, 2008, 15: 363-393 CrossRef PubMed Google Scholar

[58] Longoria A, Tinoco R, Vázquez-Duhalt R. Chemosphere, 2008, 72: 485-490 CrossRef PubMed Google Scholar

[59] Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R. Biodegradation, 2003, 14: 397-406 CrossRef Google Scholar

[60] Thurston CF. Microbiology, 1994, 140: 19-26 CrossRef Google Scholar

[61] Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Angew Chem Int Ed, 2009, 48: 2308-2312 CrossRef PubMed Google Scholar

[62] Garg B, Bisht T, Ling YC. Molecules, 2015, 20: 14155-14190 CrossRef PubMed Google Scholar

[63] Song Y, Qu K, Zhao C, Ren J, Qu X. Adv Mater, 2010, 22: 2206-2210 CrossRef PubMed Google Scholar

[64] Lim SY, Ahn J, Lee JS, Kim MG, Park CB. Small, 2012, 8: 1994-1999 CrossRef PubMed Google Scholar

[65] Qu F, Li T, Yang M. Biosens Bioelectron, 2011, 26: 3927-3931 CrossRef PubMed Google Scholar

[66] Ragg R, Tahir MN, Tremel W. Eur J Inorg Chem, 2016, 2016: 1906-1915 CrossRef Google Scholar

[67] Ali SS, Hardt JI, Quick KL, Sook Kim-Han J, Erlanger BF, Huang T, Epstein CJ, Dugan LL. Free Radical Biol Med, 2004, 37: 1191-1202 CrossRef PubMed Google Scholar

[68] Garg B, Bisht T, Ling YC. Curr Organ Chem, 2016, 20: 1547-1566 CrossRef Google Scholar

[69] Garg B, Bisht T, Ling YC. RSC Adv, 2014, 4: 57297-57307 CrossRef Google Scholar

[70] Chen X, Tian X, Su B, Huang Z, Chen X, Oyama M. Dalton Trans, 2014, 43: 7449-7454 CrossRef PubMed Google Scholar

[71] Tao Y, Lin Y, Ren J, Qu X. Biomaterials, 2013, 34: 4810-4817 CrossRef PubMed Google Scholar

[72] Lin Y, Wu L, Huang Y, Ren J, Qu X. Chem Sci, 2015, 6: 1272-1276 CrossRef Google Scholar

[73] Sun R, Wang Y, Ni Y, Kokot S. J Hazard Mater, 2014, 266: 60-67 CrossRef PubMed Google Scholar

[74] Lin B, Sun Q, Liu K, Lu D, Fu Y, Xu Z, Zhang W. Langmuir, 2014, 30: 2144-2151 CrossRef PubMed Google Scholar

[75] Hu C, Xi Q, Ge J, Luo FY, Tang LJ, Jiang JH, Yu RQ. RSC Adv, 2014, 4: 64252-64257 CrossRef Google Scholar

[76] Garg B, Ling YC. ChemInform, 2014, : doi: 10.1002/chin.201404246 CrossRef Google Scholar

[77] Bi S, Zhao T, Jia X, He P. Biosens Bioelectron, 2014, 57: 110-116 CrossRef PubMed Google Scholar

[78] Zink J, Wyrobnik T, Prinz T, Schmid M. Inter J Mol Sci, 2016, 17: 1376 CrossRef PubMed Google Scholar

[79] Lv X, Weng J. Sci Rep, 2013, 3: 3285 CrossRef PubMed ADS Google Scholar

[80] Xue T, Jiang S, Qu Y, Su Q, Cheng R, Dubin S, Chiu CY, Kaner R, Huang Y, Duan X. Angew Chem Int Ed, 2012, 51: 3822-3825 CrossRef PubMed Google Scholar

[81] Guo Y, Li J, Dong S. Sensors Actuat B-Chem, 2011, 160: 295-300 CrossRef Google Scholar

[82] Guo Y, Deng L, Li J, Guo S, Wang E, Dong S. ACS Nano, 2011, 5: 1282-1290 CrossRef PubMed Google Scholar

[83] Hua BY, Wang J, Wang K, Li X, Zhu XJ, Xia XH. Chem Commun, 2012, 48: 2316-2318 CrossRef PubMed Google Scholar

[84] Song Y, Chen Y, Feng L, Ren J, Qu X. Chem Commun, 2011, 47: 4436-4438 CrossRef PubMed Google Scholar

[85] Huang C, Bai H, Li C, Shi G. Chem Commun, 2011, 47: 4962-4964 CrossRef PubMed Google Scholar

[86] Bachrach SM. WIREs Comput Mol Sci, 2014, 4: 482-487 CrossRef Google Scholar

[87] Yates BF. In: Annual Reports on the Progress of Chemistry. Cambridgeshire: Royal Society Chemistry, 2005. 210−234. Google Scholar

[88] Zhang X, Wu G, Cai Z, Chen X. Talanta, 2015, 134: 132-135 CrossRef PubMed Google Scholar

[89] Lin XQ, Deng HH, Wu GW, Peng HP, Liu AL, Lin XH, Xia XH, Chen W. Analyst, 2015, 140: 5251-5256 CrossRef PubMed ADS Google Scholar

[90] Qian J, Yang X, Jiang L, Zhu C, Mao H, Wang K. Sensors Actuat B-Chem, 2014, 201: 160-166 CrossRef Google Scholar

[91] Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J. Chem Commun, 2014, 50: 11135-11138 CrossRef PubMed Google Scholar

[92] Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, Huang Y. Anal Chim Acta, 2013, 796: 92-100 CrossRef PubMed Google Scholar

[93] Ma M, Zhang Y, Gu N. Colloids Surf A, 2011, 373: 6-10 CrossRef Google Scholar

[94] Yuan F, Zhao H, Liu M, Quan X. Biosens Bioelectron, 2015, 68: 7-13 CrossRef PubMed Google Scholar

[95] Bianco A. Angew Chem Int Ed, 2013, 52: 4986-4997 CrossRef PubMed Google Scholar

[96] Sun H, Wu L, Wei W, Qu X. Mater Today, 2013, 16: 433-442 CrossRef Google Scholar

[97] Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN. Biosens Bioelectron, 2013, 49: 519-524 CrossRef PubMed Google Scholar

[98] Zhang Y, Wu C, Zhou X, Wu X, Yang Y, Wu H, Guo S, Zhang J. Nanoscale, 2013, 5: 1816-1819 CrossRef PubMed ADS Google Scholar

[99] Nirala NR, Abraham S, Kumar V, Bansal A, Srivastava A, Saxena PS. Sensors Actuat B-Chem, 2015, 218: 42-50 CrossRef Google Scholar

[100] Lin L, Song X, Chen Y, Rong M, Zhao T, Wang Y, Jiang Y, Chen X. Anal Chim Acta, 2015, 869: 89-95 CrossRef PubMed Google Scholar

[101] Wu X, Zhang Y, Han T, Wu H, Guo S, Zhang J. RSC Adv, 2014, 4: 3299-3305 CrossRef Google Scholar

[102] Bacon M, Bradley SJ, Nann T. Part Part Syst Charact, 2014, 31: 415-428 CrossRef Google Scholar

[103] Gollavelli G, Ling YC. Biomaterials, 2012, 33: 2532-2545 CrossRef PubMed Google Scholar

[104] Gollavelli G, Ling YC. Biomaterials, 2014, 35: 4499-4507 CrossRef PubMed Google Scholar

[105] Sumner JB. J Biol Chem, 1926, 69: 435-441. Google Scholar

[106] Garg B, Bisht T, Ling YC. Molecules, 2014, 19: 14582-14614 CrossRef PubMed Google Scholar

[107] Zhang YL, Chen QD, Jin Z, Kim E, Sun HB. Nanoscale, 2012, 4: 4858-4869 CrossRef PubMed ADS Google Scholar

[108] Huang X, Qi X, Boey F, Zhang H. Chem Soc Rev, 2012, 41: 666-686 CrossRef PubMed Google Scholar

[109] Tramontano A, Janda KD, Lerner RA. Science, 1986, 234: 1566-1570 CrossRef ADS Google Scholar

[110] Garg B, Sung CH, Ling YC. WIREs Nanomed Nanobiotechnol, 2015, 7: 737-758 CrossRef PubMed Google Scholar

[111] Seabra AB, Paula AJ, de Lima R, Alves OL, Durán N. Chem Res Toxicol, 2014, 27: 159-168 CrossRef PubMed Google Scholar

[112] Tao Y, Lin Y, Huang Z, Ren J, Qu X. Adv Mater, 2013, 25: 2594-2599 CrossRef PubMed Google Scholar

[113] Manea F, Houillon FB, Pasquato L, Scrimin P. Angew Chem Int Ed, 2004, 43: 6165-6169 CrossRef PubMed Google Scholar

[114] Comotti M, Della Pina C, Matarrese R, Rossi M. Angew Chem Int Ed, 2004, 43: 5812-5815 CrossRef PubMed Google Scholar

[115] Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z. Nanoscale, 2015, 7: 8495-8502 CrossRef PubMed ADS Google Scholar

[116] Huang Q, Weber WJ. Environ Sci Technol, 2005, 39: 6029-6036 CrossRef ADS Google Scholar

[117] Wan Y, Qi P, Zhang D, Wu J, Wang Y. Biosens Bioelectron, 2012, 33: 69-74 CrossRef PubMed Google Scholar

[118] Wang C, Daimon H, Sun S. Nano Lett, 2009, 9: 1493-1496 CrossRef PubMed ADS Google Scholar

[119] Hao J, Zhang Z, Yang W, Lu B, Ke X, Zhang B, Tang J. J Mater Chem A, 2013, 1: 4352-4357 CrossRef Google Scholar

[120] Wang H, Li S, Si Y, Sun Z, Li S, Lin Y. J Mater Chem B, 2014, 2: 4442-4448 CrossRef Google Scholar

[121] Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG. Nanoscale, 2012, 4: 3969-3976 CrossRef PubMed ADS Google Scholar

[122] Kim MI, Kim MS, Woo MA, Ye Y, Kang KS, Lee J, Park HG. Nanoscale, 2014, 6: 1529-1536 CrossRef PubMed ADS Google Scholar

[123] Gollavelli G, Chang CC, Ling YC. ACS Sustain Chem Eng, 2013, 1: 462-472 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1