logo

Two-dimensional assembly of giant molecules

More info
  • ReceivedJul 16, 2017
  • AcceptedSep 1, 2017
  • PublishedDec 12, 2017

Abstract

This mini review summarizes recent progress on two-dimensional (2D) self-assembly of giant molecules. Two critical factors with significant impact on the formation of nanostructure are highlighted, i.e., the dimensional constraint of 2D geometry, and the conformational constraint imposed the rigid molecular nanoparticles (MNPs). Diverse 2D nanostructures have been fabricated in condensed state and solution by rational molecular design. The collective secondary interactions between functional groups on the periphery of the MNPs and their persistent shape, together with the dimensional limit, change the free energy landscape and lead to unconventional nanostructures. The unique molecular properties of giant molecules endow these 2D structures with promising technological applications.


Funded by

Pearl River Talent Scheme(2016ZT06C322)

Fundamental Research Funds for the Central University(2017JQ006)

National Natural Science Foundation of China(51773066)


Acknowledgment

This work was supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (2016ZT06C322), the Fundamental Research Funds for the Central University (2017JQ006), and the National Natural Science Foundation of China (51773066). X.H. Dong thanks the support from the South China University of Technology.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Mannix AJ, Kiraly B, Hersam MC, Guisinger NP. Nat Rev Chem, 2017, 1: 0014 CrossRef Google Scholar

[2] Liu X, Guo Q, Qiu J. Adv Mater, 2017, 29: 1605886 CrossRef PubMed Google Scholar

[3] Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q. J Am Chem Soc, 2013, 135: 1213-1216 CrossRef PubMed Google Scholar

[4] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[5] Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. Science, 2007, 318: 80-83 CrossRef PubMed ADS Google Scholar

[6] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Science, 2009, 324: 1312-1314 CrossRef PubMed ADS arXiv Google Scholar

[7] Men L, White MA, Andaraarachchi H, Rosales BA, Vela J. Chem Mater, 2016, 29: 168-175 CrossRef Google Scholar

[8] Allen MJ, Tung VC, Kaner RB. Chem Rev, 2010, 110: 132-145 CrossRef PubMed Google Scholar

[9] Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Science, 2011, 331: 568-571 CrossRef PubMed ADS Google Scholar

[10] Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA. Science, 2006, 314: 274-278 CrossRef PubMed ADS Google Scholar

[11] Schliehe C, Juarez BH, Pelletier M, Jander S, Greshnykh D, Nagel M, Meyer A, Foerster S, Kornowski A, Klinke C, Weller H. Science, 2010, 329: 550-553 CrossRef PubMed ADS arXiv Google Scholar

[12] Yu J, Li J, Zhang W, Chang H. Chem Sci, 2015, 6: 6705-6716 CrossRef Google Scholar

[13] Hartgerink JD, Beniash E, Stupp SI. Science, 2001, 294: 1684-1688 CrossRef PubMed ADS Google Scholar

[14] Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science, 2004, 304: 1481-1483 CrossRef PubMed ADS Google Scholar

[15] Zhang L, Eisenberg A. Science, 1995, 268: 1728-1731 CrossRef PubMed ADS Google Scholar

[16] Li Z, Hillmyer MA, Lodge TP. Nano Lett, 2006, 6: 1245-1249 CrossRef PubMed ADS Google Scholar

[17] Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee BC, Connolly MD, Kisielowski C, Zuckermann RN. Nat Mater, 2010, 9: 454-460 CrossRef PubMed ADS Google Scholar

[18] Bates FS. Science, 1991, 251: 898-905 CrossRef PubMed ADS Google Scholar

[19] Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH. Science, 2012, 336: 434-440 CrossRef PubMed ADS Google Scholar

[20] Bates FS, Fredrickson GH. Annu Rev Phys Chem, 1990, 41: 525–557. Google Scholar

[21] Matsen MW, Bates FS. Macromolecules, 1996, 29: 1091-1098 CrossRef ADS Google Scholar

[22] Dong XH, Hsu CH, Li Y, Liu H, Wang J, Huang M, Yue K, Sun HJ, Wang CL, Yu X, Zhang WB, Lotz B, Cheng SZD. Adv Polym Sci, 2016, 276: 183–213. Google Scholar

[23] Zhang W, Huang M, Su H, Zhang S, Yue K, Dong XH, Li X, Liu H, Zhang S, Wesdemiotis C, Lotz B, Zhang WB, Li Y, Cheng SZD. ACS Cent Sci, 2016, 2: 48-54 CrossRef Google Scholar

[24] Yin GZ, Zhang WB, Cheng SZD. Sci China Chem, 2017, 60: 338-352 CrossRef Google Scholar

[25] Zhang WB, Yu X, Wang CL, Sun HJ, Hsieh IF, Li Y, Dong XH, Yue K, Van Horn R, Cheng SZD. Macromolecules, 2014, 47: 1221-1239 CrossRef ADS Google Scholar

[26] Yu X, Zhong S, Li X, Tu Y, Yang S, Van Horn RM, Ni C, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang WB, Cheng SZD. J Am Chem Soc, 2010, 132: 16741-16744 CrossRef PubMed Google Scholar

[27] Yu X, Zhang WB, Yue K, Li X, Liu H, Xin Y, Wang CL, Wesdemiotis C, Cheng SZD. J Am Chem Soc, 2012, 134: 7780-7787 CrossRef PubMed Google Scholar

[28] Yu X, Yue K, Hsieh IF, Li Y, Dong XH, Liu C, Xin Y, Wang HF, Shi AC, Newkome GR, Ho RM, Chen EQ, Zhang WB, Cheng SZD. Proc Natl Acad Sci USA, 2013, 110: 10078-10083 CrossRef PubMed ADS Google Scholar

[29] Dong XH, Ni B, Huang M, Hsu CH, Chen Z, Lin Z, Zhang WB, Shi AC, Cheng SZD. Macromolecules, 2015, 48: 7172-7179 CrossRef ADS Google Scholar

[30] Huang M, Hsu CH, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang WB, Yue K, Cheng SZD. Science, 2015, 348: 424-428 CrossRef PubMed ADS Google Scholar

[31] Ni B, Huang M, Chen Z, Chen Y, Hsu CH, Li Y, Pochan D, Zhang WB, Cheng SZD, Dong XH. J Am Chem Soc, 2015, 137: 1392-1395 CrossRef PubMed Google Scholar

[32] Dong XH, Ni B, Huang M, Hsu CH, Bai R, Zhang WB, Shi AC, Cheng SZD. Angew Chem Int Ed, 2016, 55: 2459-2463 CrossRef PubMed Google Scholar

[33] Hsu CH, Dong XH, Lin Z, Ni B, Lu P, Jiang Z, Tian D, Shi AC, Thomas EL, Cheng SZD. ACS Nano, 2016, 10: 919-929 CrossRef Google Scholar

[34] Yue K, Huang M, Marson RL, He J, Huang J, Zhou Z, Wang J, Liu C, Yan X, Wu K, Guo Z, Liu H, Zhang W, Ni P, Wesdemiotis C, Zhang WB, Glotzer SC, Cheng SZD. Proc Natl Acad Sci USA, 2016, 113: 14195-14200 CrossRef PubMed ADS Google Scholar

[35] Li Y, Zhang WB, Hsieh IF, Zhang G, Cao Y, Li X, Wesdemiotis C, Lotz B, Xiong H, Cheng SZD. J Am Chem Soc, 2011, 133: 10712-10715 CrossRef PubMed Google Scholar

[36] Liu H, Hsu CH, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang WB, Yue K, Cheng SZD. J Am Chem Soc, 2014, 136: 10691-10699 CrossRef PubMed Google Scholar

[37] Liu H, Luo J, Shan W, Guo D, Wang J, Hsu CH, Huang M, Zhang W, Lotz B, Zhang WB, Liu T, Yue K, Cheng SZD. ACS Nano, 2016, 10: 6585-6596 CrossRef Google Scholar

[38] Yu X, Li Y, Dong XH, Yue K, Lin Z, Feng X, Huang M, Zhang WB, Cheng SZD. J Polym Sci Part B-Polym Phys, 2014, 52: 1309-1325 CrossRef ADS Google Scholar

[39] Hudson ZM, Boott CE, Robinson ME, Rupar PA, Winnik MA, Manners I. Nat Chem, 2014, 6: 893-898 CrossRef PubMed ADS Google Scholar

[40] He X, Hsiao MS, Boott CE, Harniman RL, Nazemi A, Li X, Winnik MA, Manners I. Nat Mater, 2017, 16: 481-488 CrossRef PubMed ADS Google Scholar

[41] Sanders DP. Chem Rev, 2010, 110: 321-360 CrossRef PubMed Google Scholar

[42] Pease RF, Chou SY. Proc IEEE, 2008, 96: 248-270 CrossRef Google Scholar

[43] Wagner C, Harned N. Nat Photon, 2010, 4: 24-26 CrossRef ADS Google Scholar

[44] Hsu CH, Yue K, Wang J, Dong XH, Xia Y, Jiang Z, Thomas EL, Cheng SZD. Macromolecules, 2017, 50: 7282-7290 CrossRef Google Scholar

[45] Suzuki Y, Cardone G, Restrepo D, Zavattieri PD, Baker TS, Tezcan FA. Nature, 2016, 533: 369-373 CrossRef PubMed ADS Google Scholar

[46] Gonen S, DiMaio F, Gonen T, Baker D. Science, 2015, 348: 1365-1368 CrossRef PubMed ADS Google Scholar

[47] Kovacs AJ, Gonthier A. Kolloid Z Z Polym, 1972, 250: 530-552 CrossRef Google Scholar

[48] Kovacs AJ, Gonthier A, Straupe C. J Polym Sci C Polym Symp, 1975, 50: 283-325 CrossRef Google Scholar

[49] Cheng SZD, Zhang A, Chen J, Heberer DP. J Polym Sci B Polym Phys, 1991, 29: 287-297 CrossRef ADS Google Scholar

[50] Cheng SZD, Zhang A, Barley JS, Chen J, Habenschuss A, Zschack PR. Macromolecules, 1991, 24: 3937-3944 CrossRef ADS Google Scholar

[51] Dong XH, Van Horn R, Chen Z, Ni B, Yu X, Wurm A, Schick C, Lotz B, Zhang WB, Cheng SZD. J Phys Chem Lett, 2013, 4: 2356-2360 CrossRef Google Scholar

[52] Tang J, Ma C, Li XY, Ren LJ, Wu H, Zheng P, Wang W. Macromolecules, 2015, 48: 2723-2730 CrossRef ADS Google Scholar

[53] Yu CB, Ren LJ, Wang W. Macromolecules, 2017, 50: 3273-3284 CrossRef ADS Google Scholar

[54] Ma C, Wu H, Huang ZH, Guo RH, Hu MB, Kübel C, Yan LT, Wang W. Angew Chem, 2015, 127: 15925-15930 CrossRef Google Scholar

[55] Hu MB, Hou ZY, Hao WQ, Xiao Y, Yu W, Ma C, Ren LJ, Zheng P, Wang W. Langmuir, 2013, 29: 5714-5722 CrossRef PubMed Google Scholar

[56] Sun HJ, Tu Y, Wang CL, Van Horn RM, Tsai CC, Graham MJ, Sun B, Lotz B, Zhang WB, Cheng SZD. J Mater Chem, 2011, 21: 14240-14247 CrossRef Google Scholar

[57] Lin MC, Hsu CH, Sun HJ, Wang CL, Zhang WB, Li Y, Chen HL, Cheng SZD. Polymer, 2014, 55: 4514-4520 CrossRef Google Scholar

[58] Antonietti M, Förster S. Adv Mater, 2003, 15: 1323-1333 CrossRef Google Scholar

[59] May S. Eur Phys J E, 2000, 3: 37-44 CrossRef ADS Google Scholar

[60] Lin Z, Sun J, Zhou Y, Wang Y, Xu H, Yang X, Su H, Cui H, Aida T, Zhang W, Cheng SZD. J Am Chem Soc, 2017, 139: 5883-5889 CrossRef PubMed Google Scholar

  • Figure 1

    Typical examples of giant molecules: giant surfactants (a), giant Janus particles (b), and giant polyhedra (c). Geometric constraint and conformational constraint are of critical importance in 2D nanostructure formation of giant molecules (d) (color online).

  • Figure 2

    Hexagonal (a) and rectangular dot pattern (b) of giant surfactants in thin film [28] (color online).

  • Figure 3

    Fluorinated POSS (FPOSS) and carboxylic acid functionalized C60 (AC60) based giant surfactants with different molecular topologies (a) and corresponding 2D nanostructures in thin film (b) [33] (color online).

  • Figure 4

    Half-folded polymer single crystal of giant surfactants (a, b) [33] and 2D crystals of molecular Janus particles (c, d) [36,37] (color online).

  • Figure 5

    2D hexagonally patterned colloidal nanosheets (a, c) [31] and nanocoins (b, d) [60] (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1