Nanoscale 3D ordered polymer networks

More info
  • ReceivedAug 3, 2017
  • AcceptedSep 5, 2017
  • PublishedDec 13, 2017


Structures having nanoscale 3D geometries are valuable as multifunctional materials, where multi-continuous microphases can synergistically influence mechanical, optical, transport and other properties. Such very high interface surface to volume ratio structures occur in a variety of materials including natural materials such as butter fly wings and sea urchin exoskeletons and in synthetic self-assembled structures such as surfactant/water systems and block polymers. Quantitative morphological characterization of such complex geometric structures is quite challenging. Unit cell sizes range from 10–300 nm with corresponding feature sizes on the 2–50 nm scale. Since these nanoscale network structures are bicontinuous, when one constituent is removed, the structure is still self supporting. Removal of one component produces a nanoporous material that may be in-filled with another component, or the surfaces of the nanopores can be coated with ultra-thin layers by atomic layer deposition to offer multifunctional capabilities. Due to the ability to individually tailor the properties of the network(s) and matrix, for example, to create strong dielectric or impedance contrast, such spatially periodic structures are excellent for the interference of waves (electromagnetic for photonic applications and acoustic for phononic applications) that can lead to bandgaps and hence the control of wave propagation in the material. This mini-review will focus on networks formed by bottom up self assembly of block polymers. In addition to structural issues, we emphasize the special physical properties related to bi- or tri-continuous networks.

Funded by

the U.S. Department of Energy

Office of Science

Office of Basic Energy Sciences(de-sc0014457)


This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (de-sc0014457).

Interest statement

The author declares no conflict of interest.


[1] Alward DB, Kinning DJ, Thomas EL, Fetters LJ. Macromolecules, 1986, 19: 215-224 CrossRef ADS Google Scholar

[2] Thomas EL, Alward DB, Kinning DJ, Martin DC, Handlin DL, Fetters LJ. Macromolecules, 1986, 19: 2197-2202 CrossRef ADS Google Scholar

[3] Wohlgemuth M, Yufa N, Hoffman J, Thomas EL. Macromolecules, 2001, 34: 6083-6089 CrossRef ADS Google Scholar

[4] Epps TH, Cochran EW, Bailey TS, Waletzko RS, Hardy CM, Bates FS. Macromolecules, 2004, 37: 8325-8341 CrossRef ADS Google Scholar

[5] Jain A, Toombes GES, Hall LM, Mahajan S, Garcia CBW, Probst W, Gruner SM, Wiesner U. Angew Chem Int Ed, 2005, 44: 1226-1229 CrossRef PubMed Google Scholar

[6] Bluemle MJ, Fleury G, Lodge TP, Bates FS. Soft Matter, 2009, 5: 1587-1590 CrossRef ADS Google Scholar

[7] Hasegawa H, Tanaka H, Yamasaki K, Hashimoto T. Macromolecules, 1987, 20: 1651-1662 CrossRef ADS Google Scholar

[8] Hajduk DA, Harper PE, Gruner SM, Honeker CC, Kim G, Thomas EL, Fetters LJ. Macromolecules, 1994, 27: 4063-4075 CrossRef ADS Google Scholar

[9] Schulz MF, Bates FS, Almdal K, Mortensen K. Phys Rev Lett, 1994, 73: 86-89 CrossRef PubMed ADS Google Scholar

[10] Hajduk DA, Harper PE, Gruner SM, Honeker CC, Thomas EL, Fetters LJ. Macromolecules, 1995, 28: 2570-2573 CrossRef ADS Google Scholar

[11] Winey KI, Thomas EL, Fetters LJ. Macromolecules, 1992, 25: 422-428 CrossRef ADS Google Scholar

[12] Matsushita Y, Tamura M, Noda I. Macromolecules, 1994, 27: 3680-3682 CrossRef ADS Google Scholar

[13] Chu CY, Lin WF, Tsai JC, Lai CS, Lo SC, Chen HL, Hashimoto T. Macromolecules, 2012, 45: 2471-2477 CrossRef ADS Google Scholar

[14] Li Z, Hur K, Sai H, Higuchi T, Takahara A, Jinnai H, Gruner SM, Wiesner U. Nat Commun, 2014, 5: 3247 CrossRef PubMed ADS Google Scholar

[15] Chu CY, Jiang X, Jinnai H, Pei RY, Lin WF, Tsai JC, Chen HL. Soft Matter, 2015, 11: 1871-1876 CrossRef PubMed ADS Google Scholar

[16] Takagi H, Yamamoto K, Okamoto S. Europhys Lett, 2015, 110: 48003 CrossRef ADS Google Scholar

[17] Cao X, Xu D, Yao Y, Han L, Terasaki O, Che S. Chem Mater, 2016, 28: 3691-3702 CrossRef Google Scholar

[18] Asai Y, Suzuki J, Aoyama Y, Nishioka H, Takano A, Matsushita Y. Macromolecules, 2017, 50: 5402-5411 CrossRef Google Scholar

[19] Seddon JM. Biochim Biophys Acta, 1990, 1031: 1-69 CrossRef Google Scholar

[20] Matsushita Y, Suzuki J, Seki M. Phys B-Condens Matter, 1998, 248: 238-242 CrossRef ADS Google Scholar

[21] Shefelbine TA, Vigild ME, Matsen MW, Hajduk DA, Hillmyer MA, Cussler EL, Bates FS. J Am Chem Soc, 1999, 121: 8457-8465 CrossRef Google Scholar

[22] Matsushita Y, Hayashida K, Dotera T, Takano A. J Phys-Condens Matter, 2011, 23: 284111 CrossRef PubMed ADS Google Scholar

[23] Finnefrock AC, Ulrich R, Toombes GES, Gruner SM, Wiesner U. J Am Chem Soc, 2003, 125: 13084-13093 CrossRef PubMed Google Scholar

[24] Bailey TS, Hardy CM, Epps TH, Bates FS. Macromolecules, 2002, 35: 7007-7017 CrossRef ADS Google Scholar

[25] Epps TH, Cochran EW, Hardy CM, Bailey TS, Waletzko RS, Bates FS. Macromolecules, 2004, 37: 7085-7088 CrossRef ADS Google Scholar

[26] Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim MI, Hasegawa H. Macromolecules, 2007, 40: 4399-4402 CrossRef ADS Google Scholar

[27] Kim MI, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Hasegawa H, Ito K, Takenaka M. Macromolecules, 2008, 41: 7667-7670 CrossRef ADS Google Scholar

[28] Meier DJ. J Polym Sci, 2007, 26: 81-98 CrossRef Google Scholar

[29] Helfand E. Macromolecules, 1975, 8: 552-556 CrossRef ADS Google Scholar

[30] Leibler L. Macromolecules, 1980, 13: 1602-1617 CrossRef ADS Google Scholar

[31] Matsen MW, Schick M. Phys Rev Lett, 1994, 72: 2660-2663 CrossRef PubMed ADS Google Scholar

[32] Dotera T. Phys Rev Lett, 2002, 89: 205502 CrossRef PubMed ADS Google Scholar

[33] Tyler CA, Morse DC. Phys Rev Lett, 2005, 94: 208302 CrossRef PubMed ADS Google Scholar

[34] Lescanec RL, Fetters LJ, Thomas EL. Macromolecules, 1998, 31: 1680–1685. Google Scholar

[35] Thomas EL, Anderson DM, Henkee CS, Hoffman D. Nature, 1988, 334: 598-601 CrossRef ADS Google Scholar

[36] Schoen AH. Infinite Periodic Minimal Surfaces Without Self-Intersections. NASA Tech Note, 1970. Google Scholar

[37] Anderson DM, Davis HT, Nitsche JCC, Scriven LE. Adv Chem Phys, 1990, 77: 337–396. Google Scholar

[38] Grosse-Braukmann K. Interf Focus, 2012, 582–588. Google Scholar

[39] Matsen MW, Bates FS. Macromolecules, 1996, 29: 7641-7644 CrossRef ADS Google Scholar

[40] Meuler AJ, Hillmyer MA, Bates FS. Macromolecules, 2009, 42: 7221-7250 CrossRef Google Scholar

[41] Laurer JH, Hajduk DA, Fung JC, Sedat JW, Smith SD, Gruner SM, Agard DA, Spontak RJ. Macromolecules, 1997, 30: 3938-3941 CrossRef ADS Google Scholar

[42] Jinnai H, Nishikawa Y, Spontak RJ, Smith SD, Agard DA, Hashimoto T. Phys Rev Lett, 2000, 84: 518-521 CrossRef PubMed ADS Google Scholar

[43] Jinnai H, Kajihara T, Watashiba H, Nishikawa Y, Spontak RJ. Phys Rev E, 2001, 64: 069903 CrossRef ADS Google Scholar

[44] Jung J, Park HW, Lee J, Huang H, Chang T, Rho Y, Ree M, Sugimori H, Jinnai H. Soft Matter, 2011, 7: 10424-10428 CrossRef ADS Google Scholar

[45] Dair BJ, Honeker CC, Alward DB, Avgeropoulos A, Hadjichristidis N, Fetters LJ, Capel M, Thomas EL. Macromolecules, 1999, 32: 8145-8152 CrossRef ADS Google Scholar

[46] Honeker CC, Thomas EL. Chem Mater, 1996, 8: 1702-1714 CrossRef Google Scholar

[47] Meuler AJ, Fleury G, Hillmyer MA, Bates FS. Macromolecules, 2008, 41: 5809-5817 CrossRef ADS Google Scholar

[48] Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Valdevit L, Carter WB. Science, 2011, 334: 962-965 CrossRef PubMed ADS Google Scholar

[49] Chan VZ, Hoffman J, Lee VY, Iatrou H, Avgeropoulos A, Hadjichristidis N, Miller RD, Thomas EL. Science, 1999, 286: 1716-1719 CrossRef Google Scholar

[50] Hsueh HY, Chen HY, She MS, Chen CK, Ho RM, Gwo S, Hasegawa H, Thomas EL. Nano Lett, 2010, 10: 4994-5000 CrossRef PubMed ADS Google Scholar

[51] Hsueh HY, Huang YC, Ho RM, Lai CH, Makida T, Hasegawa H. Adv Mater, 2011, 23: 3041-3046 CrossRef PubMed Google Scholar

[52] Ross CA, Berggren KK, Cheng JY, Jung YS, Chang JB. Adv Mater, 2014, 26: 4386-4396 CrossRef PubMed Google Scholar

[53] Widin JM, Schmitt AK, Schmitt AL, Im K, Mahanthappa MK. J Am Chem Soc, 2012, 134: 3834-3844 CrossRef PubMed Google Scholar

[54] Li Y, Qian HJ, Lu ZY, Shi AC. Polymer, 2013, 54: 6253-6260 CrossRef Google Scholar

[55] Maldovan M, Thomas EL. Periodic Materials and Interference Lithography: for Photonics, Phononics and Mechanics. Weinheim: Wiley-VCH Publishers, 2009. 331. Google Scholar

[56] Lee JH, Koh CY, Singer JP, Jeon SJ, Maldovan M, Stein O, Thomas EL. Adv Mater, 2014, 26: 532-569 CrossRef PubMed Google Scholar

[57] Maldovan M, Urbas AM, Yufa N, Carter WC, Thomas EL. Phys Rev B, 2002, 65: 165123 CrossRef ADS Google Scholar

[58] Maldovan M, Carter WC, Thomas EL. Appl Phys Lett, 2003, 83: 5172-5174 CrossRef ADS Google Scholar

[59] Kang Y, Walish JJ, Gorishnyy T, Thomas EL. Nat Mater, 2007, 6: 957-960 CrossRef PubMed ADS Google Scholar

[60] Chan EP, Walish JJ, Urbas AM, Thomas EL. Adv Mater, 2013, 25: 3934-3947 CrossRef PubMed Google Scholar

[61] Urbas AM, Maldovan M, DeRege P, Thomas EL. Adv Mater, 2002, 14: 1850-1853 CrossRef Google Scholar

[62] Chen Y, Yao H, Wang L. J Appl Phys, 2013, 114: 043521-043521 CrossRef ADS Google Scholar

[63] Chen Y, Wang L. Appl Phys Lett, 2014, 105: 191907 CrossRef Google Scholar

[64] Park C, Yoon J, Thomas EL. Polymer, 2003, 44: 6725-6760 CrossRef Google Scholar

[65] Bates CM, Bates FS. Macromolecules, 2017, 50: 3-22 CrossRef ADS Google Scholar

[66] NSF Workshop Report, Bates, FS Chair. Frontiers in Polymer Science and Engineering. Twin Cities: University of Minnesota, 2017. Google Scholar

  • Figure 1

    Network microdomain structures in block polymers. (a) The double diamond (DD) with tetrapod nodes; (b) the double gyroid (DG) with tripod nodes; (c) the Plumber’s Nightmare (P) with hexapod nodes; (d) the noncubic O70 with tripod nodes; (e) the noncubic O52 with tripod nodes. (a), (b) and (d) are reprinted with permission from Macromolecules (Refs. [2], [3], and [4], respectively), copyrights 1986, 2001 and 2004, American Chemical Society. (c) is reprinted with permission from Angewandte Chemie Ref. [5] and (e) is reprinted with permission from Soft Matter Ref. [6] (color online).

  • Figure 2

    Computed domain shapes for cylinders, gyroid, perforated lamellae and diamond. The colors indicate the departure from constant mean curvature. Reprinted with permission from Macromolecules Ref. [38], copyright 1996, American Chemical Society (color online).

  • Figure 3

    TEM tomographic reconstructions of cubic networks. (A) Experimental reconstruction of double gyroid; (B) computational model of double gyroid network; (C) skeletal graph of experimental structure showing tripodal nodes; (D) experimental reconstruction of double diamond; (E) experimental reconstruction of double diamond (left) with skeletal graph (right). (A) and (B) are reprinted with permission from Phys. Rev. Lett. Ref. [42]. (C) is from Phys. Rev. E Ref. [43]. (D) is reprinted with permission from Macromolecules Ref. [18], copyright 2017. (E) is reprinted from Soft Matter Ref. [15], copyright 2015 (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有