logo

SCIENCE CHINA Chemistry, Volume 61, Issue 2: 143-152(2018) https://doi.org/10.1007/s11426-017-9162-3

Assemblies of covalent organic framework microcrystals: multiple-dimensional manipulation for enhanced applications

More info
  • ReceivedJul 21, 2017
  • AcceptedOct 26, 2017
  • PublishedJan 5, 2018

Abstract

Covalent organic frameworks (COFs) are well known as the next generation of shape-persistent zeolite analogues, which have brought new impetus to the development of porous organic materials as well as two-dimensional polymers. Since the advent of COFs in 2005, many striking findings have definitely proven their great potentials expanding applications across energy, environment and healthcare fields. With thorough exploration over a decade, research interest has been drawn on the scientific challenges on chemistry, while making full play of COF values has remained far from satisfactory yet. Thus opening an avenue to modulating COF assemblies on the multi-scale is no longer just an option, but a necessity for matching the application requirements with enhanced performances. In this mini-review, we summarize the recent progress on design of nanoscale COFs with varying forms. Detailed description is concentrated on the synthetic strategies of COF assemblies such as spheres, fibers, tubes, coatings and films, thereby shedding light on the flexible manipulation over dimensions, compositions and morphologies. Meanwhile, the advanced applications of nanoscale COFs have been discussed here with comparison of their bulky counterparts.


Funded by

National Natural Science Foundation of China(21474015,21774023)

STCSM(14ZR1402300)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21474015, 21774023), and Science and Technology Commission of Shanghai Municipality (14ZR1402300).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Mastalerz M. Angew Chem Int Ed, 2008, 47: 445-447 CrossRef PubMed Google Scholar

[2] Nagai A, Chen X, Feng X, Ding X, Guo Z, Jiang D. Angew Chem Int Ed, 2013, 52: 3770-3774 CrossRef PubMed Google Scholar

[3] Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J Am Chem Soc, 2016, 138: 5797-5800 CrossRef PubMed Google Scholar

[4] Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. J Am Chem Soc, 2013, 135: 17310-17313 CrossRef PubMed Google Scholar

[5] Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew Chem, 2008, 120: 8958-8962 CrossRef Google Scholar

[6] Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat Commun, 2015, 6: 8508 CrossRef ADS Google Scholar

[7] Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir SM, Banerjee R. J Am Chem Soc, 2014, 136: 6570-6573 CrossRef PubMed Google Scholar

[8] Ma H, Liu B, Li B, Zhang L, Li YG, Tan HQ, Zang HY, Zhu G. J Am Chem Soc, 2016, 138: 5897-5903 CrossRef PubMed Google Scholar

[9] Mulzer CR, Shen L, Bisbey RP, McKone JR, Zhang N, Abruña HD, Dichtel WR. ACS Cent Sci, 2016, 2: 667-673 CrossRef Google Scholar

[10] Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. J Am Chem Soc, 2007, 129: 12914-12915 CrossRef PubMed Google Scholar

[11] El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, O’Keeffe M, Yaghi OM. Science, 2007, 316: 268-272 CrossRef ADS Google Scholar

[12] Cai SL, Zhang K, Tan JB, Wang S, Zheng SR, Fan J, Yu Y, Zhang WG, Liu Y. ACS Macro Lett, 2016, 5: 1348-1352 CrossRef Google Scholar

[13] Liu Y, Ma Y, Zhao Y, Sun X, Gándara F, Furukawa H, Liu Z, Zhu H, Zhu C, Suenaga K, Oleynikov P, Alshammari AS, Zhang X, Terasaki O, Yaghi OM. Science, 2016, 351: 365-369 CrossRef PubMed ADS Google Scholar

[14] Pang ZF, Xu SQ, Zhou TY, Liang RR, Zhan TG, Zhao X. J Am Chem Soc, 2016, 138: 4710-4713 CrossRef PubMed Google Scholar

[15] Lin G, Ding H, Chen R, Peng Z, Wang B, Wang C. J Am Chem Soc, 2017, 139: 8705-8709 CrossRef PubMed Google Scholar

[16] Qian C, Qi QY, Jiang GF, Cui FZ, Tian Y, Zhao X. J Am Chem Soc, 2017, 139: 6736-6743 CrossRef PubMed Google Scholar

[17] Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Science, 2005, 310: 1166-1170 CrossRef PubMed ADS Google Scholar

[18] Kuhn P, Antonietti M, Thomas A. Angew Chem Int Ed, 2008, 47: 3450-3453 CrossRef PubMed Google Scholar

[19] Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. J Am Chem Soc, 2009, 131: 4570-4571 CrossRef PubMed Google Scholar

[20] Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM. J Am Chem Soc, 2011, 133: 11478-11481 CrossRef PubMed Google Scholar

[21] Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. J Am Chem Soc, 2012, 134: 19524-19527 CrossRef PubMed Google Scholar

[22] Li H, Pan Q, Ma Y, Guan X, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. J Am Chem Soc, 2016, 138: 14783-14788 CrossRef PubMed Google Scholar

[23] Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew Chem Int Ed, 2009, 48: 5439-5442 CrossRef PubMed Google Scholar

[24] Ding X, Guo J, Feng X, Honsho Y, Guo J, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D. Angew Chem Int Ed, 2011, 50: 1289-1293 CrossRef PubMed Google Scholar

[25] Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey SK, Liao L, Ambrogio MW, Botros YY, Duan X, Seki S, Stoddart JF, Yaghi OM. Chem Mater, 2011, 23: 4094-4097 CrossRef Google Scholar

[26] Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L, Saeki A, Irle S, Seki S, Dong Y, Jiang D. Adv Mater, 2012, 24: 3026-3031 CrossRef PubMed Google Scholar

[27] Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W. J Am Chem Soc, 2016, 138: 3031-3037 CrossRef PubMed Google Scholar

[28] Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2016, 138: 12332-12335 CrossRef Google Scholar

[29] Xu HS, Ding SY, An WK, Wu H, Wang W. J Am Chem Soc, 2016, 138: 11489-11492 CrossRef PubMed Google Scholar

[30] Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y. J Am Chem Soc, 2017, 139: 8693-8697 CrossRef PubMed Google Scholar

[31] Zhang J, Han X, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2017, 139: 8277-8285 CrossRef PubMed Google Scholar

[32] Kandambeth S, Venkatesh V, Shinde DB, Kumari S, Halder A, Verma S, Banerjee R. Nat Commun, 2015, 6: 6786 CrossRef PubMed ADS Google Scholar

[33] Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548-568 CrossRef PubMed Google Scholar

[34] Xu L, Zhou X, Tian WQ, Gao T, Zhang YF, Lei S, Liu ZF. Angew Chem Int Ed, 2014, 53: 9564-9568 CrossRef PubMed Google Scholar

[35] Zhou TY, Lin F, Li ZT, Zhao X. Macromolecules, 2013, 46: 7745-7752 CrossRef ADS Google Scholar

[36] Halder A, Kandambeth S, Biswal BP, Kaur G, Roy NC, Addicoat M, Salunke JK, Banerjee S, Vanka K, Heine T, Verma S, Banerjee R. Angew Chem, 2016, 128: 7937-7941 CrossRef Google Scholar

[37] Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. Angew Chem, 2016, 128: 14185-14190 CrossRef Google Scholar

[38] Sun B, Wang D, Wan L. Sci China Chem, 2017, 60: 1098-1102 CrossRef Google Scholar

[39] Smith BJ, Parent LR, Overholts AC, Beaucage PA, Bisbey RP, Chavez AD, Hwang N, Park C, Evans AM, Gianneschi NC, Dichtel WR. ACS Cent Sci, 2017, 3: 58-65 CrossRef Google Scholar

[40] Chen L, Zhang L, Chen Z, Liu H, Luque R, Li Y. Chem Sci, 2016, 7: 6015-6020 CrossRef Google Scholar

[41] Shi X, Yao Y, Xu Y, Liu K, Zhu G, Chi L, Lu G. ACS Appl Mater Interfaces, 2017, 9: 7481-7488 CrossRef Google Scholar

[42] Bavykina AV, Rozhko E, Goesten MG, Wezendonk T, Seoane B, Kapteijn F, Makkee M, Gascon J. ChemCatChem, 2016, 8: 2217-2221 CrossRef Google Scholar

[43] Pachfule P, Kandmabeth S, Mallick A, Banerjee R. Chem Commun, 2015, 51: 11717-11720 CrossRef PubMed Google Scholar

[44] Sun B, Liu J, Cao A, Song W, Wang D. Chem Commun, 2017, 53: 6303-6306 CrossRef PubMed Google Scholar

[45] Chavez AD, Smith BJ, Smith MK, Beaucage PA, Northrop BH, Dichtel WR. Chem Mater, 2016, 28: 4884-4888 CrossRef Google Scholar

[46] Salonen LM, Medina DD, Carbó-Argibay E, Goesten MG, Mafra L, Guldris N, Rotter JM, Stroppa DG, Rodríguez-Abreu C. Chem Commun, 2016, 52: 7986-7989 CrossRef PubMed Google Scholar

[47] Jiang Y, Huang W, Wang J, Wu Q, Wang H, Pan L, Liu X. J Mater Chem A, 2014, 2: 8201-8204 CrossRef Google Scholar

[48] Rodríguez San Miguel D, Abrishamkar A, Navarro JA, Rodriguez Trujillo R, Amabilino DB, Mas Ballesté R, Zamora F, Puigmartí Luis J. Chem Commun, 2016, 52: 9212–9215. Google Scholar

[49] Colson JW, Woll AR, Mukherjee A, Levendorf MP, Spitler EL, Shields VB, Spencer MG, Park J, Dichtel WR. Science, 2011, 332: 228-231 CrossRef PubMed ADS Google Scholar

[50] Spitler EL, Colson JW, Uribe-Romo FJ, Woll AR, Giovino MR, Saldivar A, Dichtel WR. Angew Chem Int Ed, 2012, 51: 2623-2627 CrossRef PubMed Google Scholar

[51] DeBlase CR, Hernández-Burgos K, Silberstein KE, Rodríguez-Calero GG, Bisbey RP, Abruña HD, Dichtel WR. ACS Nano, 2015, 9: 3178-3183 CrossRef Google Scholar

[52] Medina DD, Werner V, Auras F, Tautz R, Dogru M, Schuster J, Linke S, Döblinger M, Feldmann J, Knochel P, Bein T. ACS Nano, 2014, 8: 4042-4052 CrossRef PubMed Google Scholar

[53] Cai SL, Zhang YB, Pun AB, He B, Yang J, Toma FM, Sharp ID, Yaghi OM, Fan J, Zheng SR, Zhang WG, Liu Y. Chem Sci, 2014, 5: 4693-4700 CrossRef Google Scholar

[54] Dong W, Wang L, Ding H, Zhao L, Wang D, Wang C, Wan LJ. Langmuir, 2015, 31: 11755-11759 CrossRef PubMed Google Scholar

[55] Dong WL, Li SY, Yue JY, Wang C, Wang D, Wan LJ. Phys Chem Chem Phys, 2016, 18: 17356-17359 CrossRef PubMed ADS Google Scholar

[56] Bisbey RP, DeBlase CR, Smith BJ, Dichtel WR. J Am Chem Soc, 2016, 138: 11433-11436 CrossRef PubMed Google Scholar

[57] Medina DD, Rotter JM, Hu Y, Dogru M, Werner V, Auras F, Markiewicz JT, Knochel P, Bein T. J Am Chem Soc, 2015, 137: 1016-1019 CrossRef PubMed Google Scholar

[58] Berlanga I, Ruiz-González ML, González-Calbet JM, Fierro JLG, Mas-Ballesté R, Zamora F. Small, 2011, 7: 1207-1211 CrossRef PubMed Google Scholar

[59] Bunck DN, Dichtel WR. J Am Chem Soc, 2013, 135: 14952-14955 CrossRef PubMed Google Scholar

[60] Das G, Biswal BP, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem Sci, 2015, 6: 3931-3939 CrossRef Google Scholar

[61] Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 5328-5331 CrossRef PubMed Google Scholar

[62] Chandra S, Kandambeth S, Biswal BP, Lukose B, Kunjir SM, Chaudhary M, Babarao R, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 17853-17861 CrossRef PubMed Google Scholar

[63] Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J Am Chem Soc, 2017, 139: 4258-4261 CrossRef PubMed Google Scholar

[64] Mitra S, Kandambeth S, Biswal BP, Khayum M. A, Choudhury CK, Mehta M, Kaur G, Banerjee S, Prabhune A, Verma S, Roy S, Kharul UK, Banerjee R. J Am Chem Soc, 2016, 138: 2823-2828 CrossRef PubMed Google Scholar

[65] Khayum MA, Kandambeth S, Mitra S, Nair SB, Das A, Nagane SS, Mukherjee R, Banerjee R. Angew Chem Int Ed, 2016, 55: 15604-15608 CrossRef PubMed Google Scholar

[66] Dai W, Shao F, Szczerbiński J, McCaffrey R, Zenobi R, Jin Y, Schlüter AD, Zhang W. Angew Chem Int Ed, 2016, 55: 213-217 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Synthesis of COF-DhaTab by the Schiff base reaction of Tab and Dha; (b, c) scanning electron microscope (SEM) (b) and transmission electron microscope (TEM) (c) images of COF-DhaTab hollow microspheres; (d) proposed mechanism of the formation of COF hollow spheres [32] (color online).

  • Figure 2

    (a) Schematic representation of preparing imine-linked COF composite microspheres through the amorphous-to-crystalline conversion process; (b–d) TEM images of Fe3O4 nanoclusters (b), Fe3O4@Polyimine (c), and Fe3O4@imine-COF (d) [37] (color online).

  • Figure 3

    (a, b) Synthesis of highly stable and hollow COF nanotubes via a template-mediated strategy, and (c, d) TEM images of ZnO@COF (c) and COF nanotubes (d) [43] (color online).

  • Figure 4

    (a, b) Schematic analogues of discrete boronate-ester macrocycles (a) prepared by the differernt precursors (b); (c) atomic force microscope (AFM) image of the nanotubes assembled by the designed macrocycles [45] (color online).

  • Figure 5

    Solvothermal condensation of HHTP and PBBA on the surface of a substrate-supported SLG to form a continuous COF-5 film [49] (color online).

  • Figure 6

    (a) Synthesis of boronate-ester linked BDT-COF; (b, c) SEM (b) and TEM (c) images of BDT-COF thin film grown on an ITO-coated glass and a gold surface, respectively; (d) entrapment of fullerene molecules within pore channels of BDT-COF [52] (color online).

  • Figure 7

    (a) Illustration of boronate ester-linked COFs for preparation of thin films; (b) turbidity as a function of reaction time during the formation of COF; (c) schematic of flow setup designed with variable induction periods [56] (color online).

  • Figure 8

    Illustration of mechanical delamination of imine-linked COFs toward discrete nanosheets [62] (color online).

  • Figure 9

    (a) Synthetic procedure of DaTp-COF and DaTp-CON; (b) casting of a scalable thin film of DaTp-CONs by the method of air/water interfacial assembly [65] (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1