logo

SCIENCE CHINA Chemistry, Volume 61, Issue 5: 531-537(2018) https://doi.org/10.1007/s11426-017-9199-1

Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency

More info
  • ReceivedDec 18, 2017
  • AcceptedDec 21, 2017
  • PublishedJan 24, 2018

Abstract

A high performance polymer solar cells (PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4F containing fluorinated end-groups were developed. In addition to complementary absorption spectra (300–830 nm) with IT-4F, the PM6 also has a deep HOMO (the highest occupied molecular) level (−5.50 eV), which will lower the open-circuit voltage (Voc) sacrifice and reduce the Eloss of the IT-4F-based PSCs. Moreover, the strong crystallinity of PM6 is beneficial to form favorable blend morphology and hence to suppress recombination. As a result, in comparison with the PSCs based on a non-fluorinated D/A pair of PBDB-T:ITIC with a medium PCE of 11.2%, the PM6:IT-4F-based PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date. Furthermore, a PCE of 12.2% was remained with the active layer thickness of up to 285 nm and a high PCE of 11.4% was also obtained with a large device area of 1 cm2. In addition, the devices also showed good storage, thermal and illumination stabilities with respect to the efficiency. These results indicate that fluorination is an effective strategy to improve the photovoltaic performance of materials, as well as the both fluorinated donor and acceptor pair-PM6:IT-4F is an ideal candidate for the large scale roll-to-roll production of efficient PSCs in the future.


Funded by

the National Natural Science Foundation of China(51422306,51503135,51573120,91633301)

and Jiangsu Provincial Natural Science Foundation(Grant,No.,BK20150332)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51422306, 51503135, 51573120, 91633301), and Jiangsu Provincial Natural Science Foundation (BK20150332). T. P. Russell was supported by the U.S. Office of Naval Research (N00014-15-1-2244). Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Molecular Foundry, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Stoltzfus DM, Donaghey JE, Armin A, Shaw PE, Burn PL, Meredith P. Chem Rev, 2016, 116: 12920-12955 CrossRef PubMed Google Scholar

[2] Hwang YJ, Li H, Courtright BAE, Subramaniyan S, Jenekhe SA. Adv Mater, 2016, 28: 124-131 CrossRef PubMed Google Scholar

[3] Kwon OK, Park JH, Kim DW, Park SK, Park SY. Adv Mater, 2015, 27: 1951-1956 CrossRef PubMed Google Scholar

[4] Wu Q, Zhao D, Schneider AM, Chen W, Yu L. J Am Chem Soc, 2016, 138: 7248-7251 CrossRef PubMed Google Scholar

[5] Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28: 6504-6508 CrossRef PubMed Google Scholar

[6] Zhou N, Dudnik AS, Li TING, Manley EF, Aldrich TJ, Guo P, Liao HC, Chen Z, Chen LX, Chang RPH, Facchetti A, Olvera de la Cruz M, Marks TJ. J Am Chem Soc, 2016, 138: 1240-1251 CrossRef PubMed Google Scholar

[7] Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363-369 CrossRef PubMed ADS Google Scholar

[8] Li Z, Xu X, Zhang W, Meng X, Ma W, Yartsev A, Inganäs O, Andersson MR, Janssen RAJ, Wang E. J Am Chem Soc, 2016, 138: 10935-10944 CrossRef PubMed Google Scholar

[9] Lee C, Kang H, Lee W, Kim T, Kim KH, Woo HY, Wang C, Kim BJ. Adv Mater, 2015, 27: 2466-2471 CrossRef PubMed Google Scholar

[10] Jia J, Zheng N, Wang Z, Huang Y, Duan C, Huang F, Cao Y. Sci China Chem, 2017, 60: 1458-1467 CrossRef Google Scholar

[11] Su W, Fan Q, Guo X, Guo B, Li W, Zhang Y, Zhang M, Li Y. J Mater Chem A, 2016, 4: 14752-14760 CrossRef Google Scholar

[12] Zhang S, Yang L, Liu D, He C, Zhang J, Zhang Y, Hou J. Sci China Chem, 2017, 60: 1340-1348 CrossRef Google Scholar

[13] Fan Q, Su W, Guo X, Wang Y, Chen J, Ye C, Zhang M, Li Y. J Mater Chem A, 2017, 5: 9204-9209 CrossRef Google Scholar

[14] Guo B, Li W, Guo X, Meng X, Ma W, Zhang M, Li Y. Adv Mater, 2017, 29: 1702291 CrossRef PubMed Google Scholar

[15] Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum TC, Russell TP, Li Y. Adv Mater, 2017, 116: 1704546 CrossRef PubMed Google Scholar

[16] Cui Y, Yao H, Yang C, Zhang S, Hou J. Acta Polym Sin, 2017, doi: 10.11777/j.issn1000-3304.2018.17297. Google Scholar

[17] Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q. Adv Mater, 2017, 45: 1703973 CrossRef PubMed Google Scholar

[18] Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336-1343 CrossRef PubMed Google Scholar

[19] Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144 CrossRef PubMed Google Scholar

[20] Chen S, Liu Y, Zhang L, Chow PCY, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc, 2017, 139: 6298-6301 CrossRef PubMed Google Scholar

[21] Li W, Yan D, Liu W, Chen J, Xu W, Zhan C, Yao J. Sol RRL, 2017, 1: 1700014 CrossRef Google Scholar

[22] Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734-4739 CrossRef PubMed Google Scholar

[23] Zheng Z, Awartani OM, Gautam B, Liu D, Qin Y, Li W, Bataller A, Gundogdu K, Ade H, Hou J. Adv Mater, 2017, 29: 1604241 CrossRef PubMed Google Scholar

[24] Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651 CrossRef PubMed ADS Google Scholar

[25] Yu T, Xu X, Zhang G, Wan J, Li Y, Peng Q. Adv Funct Mater, 2017, 27: 1701491 CrossRef Google Scholar

[26] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[27] Xie D, Liu T, Gao W, Zhong C, Huo L, Luo Z, Wu K, Xiong W, Liu F, Sun Y, Yang C. Sol RRL, 2017, 1: 1700044 CrossRef Google Scholar

[28] Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, Prasad SKK, Zhu J, Huo L, Bin H, Zhang ZG, Guo X, Zhang M, Sun Y, Gao F, Wei Z, Ma W, Wang C, Hodgkiss J, Bo Z, Inganäs O, Li Y, Zhan X. Adv Mater, 2017, 29: 1604155 CrossRef PubMed Google Scholar

[29] Su W, Fan Q, Guo X, Meng X, Bi Z, Ma W, Zhang M, Li Y. Nano Energy, 2017, 38: 510-517 CrossRef Google Scholar

[30] Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574-1582 CrossRef Google Scholar

[31] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[32] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423-9429 CrossRef PubMed Google Scholar

[33] Li Y, Zhong L, Gautam B, Bin HJ, Lin JD, Wu FP, Zhang Z, Jiang ZQ, Zhang ZG, Gundogdu K, Li Y, Liao LS. Energy Environ Sci, 2017, 10: 1610-1620 CrossRef Google Scholar

[34] Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045-3049 CrossRef PubMed Google Scholar

[35] Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356-3359 CrossRef PubMed Google Scholar

[36] Liu F, Zhou Z, Zhang C, Vergote T, Fan H, Liu F, Zhu X. J Am Chem Soc, 2016, 138: 15523-15526 CrossRef PubMed Google Scholar

[37] Fan B, Zhang K, Jiang XF, Ying L, Huang F, Cao Y. Adv Mater, 2017, 29: 1606396 CrossRef PubMed Google Scholar

[38] Fan Q, Xu Z, Guo X, Meng X, Li W, Su W, Ou X, Ma W, Zhang M, Li Y. Nano Energy, 2017, 40: 20-26 CrossRef Google Scholar

[39] Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139: 4929-4934 CrossRef PubMed Google Scholar

[40] Zhang M, Guo X, Zhang S, Hou J. Adv Mater, 2014, 26: 1118-1123 CrossRef PubMed Google Scholar

[41] Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655-4660 CrossRef PubMed Google Scholar

[42] Bin H, Zhong L, Zhang ZG, Gao L, Yang Y, Xue L, Zhang J, Zhang Z, Li Y. Sci China Chem, 2016, 59: 1317-1322 CrossRef Google Scholar

[43] Fan Q, Su W, Meng X, Guo X, Li G, Ma W, Zhang M, Li Y. Sol RRL, 2017, 1: 1700020 CrossRef Google Scholar

[44] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293 CrossRef PubMed ADS Google Scholar

[45] Jo JW, Jung JW, Jung EH, Ahn H, Shin TJ, Jo WH. Energy Environ Sci, 2015, 8: 2427-2434 CrossRef Google Scholar

[46] Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie Z, Geng Y, Wang F. Adv Mater, 2014, 26: 471-476 CrossRef PubMed Google Scholar

[47] Li W, Albrecht S, Yang L, Roland S, Tumbleston JR, McAfee T, Yan L, Kelly MA, Ade H, Neher D, You W. J Am Chem Soc, 2014, 136: 15566-15576 CrossRef PubMed Google Scholar

[48] Yan T, Bin H, Yang Y, Xue L, Zhang ZG, Li Y. Sci China Chem, 2017, 60: 537-544 CrossRef Google Scholar

[49] Fan Q, Su W, Guo X, Guo B, Li W, Zhang Y, Wang K, Zhang M, Li Y. Adv Energy Mater, 2016, 6: 1600430 CrossRef Google Scholar

[50] Fan Q, Su W, Guo X, Zhang X, Xu Z, Guo B, Jiang L, Zhang M, Li Y. J Mater Chem A, 2017, 5: 5106-5114 CrossRef Google Scholar

[51] Zhang Q, Kelly MA, Bauer N, You W. Acc Chem Res, 2017, 50: 2401-2409 CrossRef PubMed Google Scholar

[52] Fan Q, Jiang H, Liu Y, Su W, Tan H, Wang Y, Yang R, Zhu W. J Mater Chem C, 2016, 4: 2606-2613 CrossRef Google Scholar

[53] Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AKY. Adv Mater, 2015, 27: 3310-3317 CrossRef PubMed Google Scholar

[54] Jheng JF, Lai YY, Wu JS, Chao YH, Wang CL, Hsu CS. Adv Mater, 2013, 25: 2445-2451 CrossRef PubMed Google Scholar

[55] Bronstein H, Frost JM, Hadipour A, Kim Y, Nielsen CB, Ashraf RS, Rand BP, Watkins S, McCulloch I. Chem Mater, 2013, 25: 277-285 CrossRef Google Scholar

[56] Kawashima K, Fukuhara T, Suda Y, Suzuki Y, Koganezawa T, Yoshida H, Ohkita H, Osaka I, Takimiya K. J Am Chem Soc, 2016, 138: 10265-10275 CrossRef PubMed Google Scholar

[57] Jo JW, Jung JW, Wang HW, Kim P, Russell TP, Jo WH. Chem Mater, 2014, 26: 4214-4220 CrossRef Google Scholar

[58] Yang F, Li C, Lai W, Zhang A, Huang H, Li W. Mater Chem Front, 2017, 1: 1389-1395 CrossRef Google Scholar

[59] Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J. Macromolecules, 2012, 45: 9611-9617 CrossRef ADS Google Scholar

[60] Wang Y, Fan Q, Guo X, Li W, Guo B, Su W, Ou X, Zhang M. J Mater Chem A, 2017, 5: 22180-22185 CrossRef Google Scholar

[61] Xu Z, Fan Q, Meng X, Guo X, Su W, Ma W, Zhang M, Li Y. Chem Mater, 2017, 29: 4811-4818 CrossRef Google Scholar

[62] Swaraj S, Wang C, Yan H, Watts B, Lüning J, McNeill CR, Ade H. Nano Lett, 2010, 10: 2863-2869 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (a) Molecular structures, (b) UV-Vis absorption spectra in films and (c) molecular energy level diagrams of PM6 and IT-4F (color online).

  • Figure 2

    (a) The J-V and (b) EQE plots of the PSCs based on PM6:IT-4F (1:1, w/w) with different fabrication conditions. (c, d) The J-V plots of the PSCs processed by DIO and thermal annealing (TA) (c) with a large device area of 1 cm2 and (d) with different active layer thicknesses. (e) PCE versus active layer thickness of the PSCs processed by DIO and TA. (f) Storage stability of the PSCs (color online).

  • Figure 3

    (a) The Jph versus Veff; (b) the Voc and (c) the Jph versus light intensity of the PM6:IT-4F (1:1, w/w)-based PSCs with different fabrication conditions (color online).

  • Figure 4

    (a, b) 2D-GIXD pattern of the PM6:IT-4F films processed from different conditions; (c) OOP and (d) IP line-cut profiles of 2D-GIXD results; (e) RSoXS profiles of the PM6:IT-4F films processed from different conditions (color online).

  • Figure 5

    The AFM (5 µm×3 µm) and TEM images of the PM6:IT-4F blend films (a–c) as-cast, and (d–f) with DIO and TA (color online). (a, b, d, e) AFM; (c, f) TEM.

  • Table 1   Photovoltaic performance date of the PSCs based on PM6:IT-4F (1:1, /)

    PM6:IT-4F

    Voc (V)

    Jsca)(mA cm−2)

    FF (%)

    PCE b) (%)

    As-cast

    0.89

    19.4 (18.5)

    66.7

    11.5 (11.1)

    DIO c) + TA d)

    0.84

    22.2 (21.1)

    72.5

    13.5 (13.2)

    The integral Jsc in parentheses from the EQE curves; b) the average PCEs in parentheses from 30 devices; c) with 0.75% DIO; d) with TA at 100 °C for 20 min;

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1