logo

SCIENCE CHINA Chemistry, Volume 61, Issue 7: 806-811(2018) https://doi.org/10.1007/s11426-017-9217-4

FeOOH-loaded mesoporous silica nanoparticles as a theranostic platform with pH-responsive MRI contrast enhancement and drug release

More info
  • ReceivedNov 25, 2017
  • AcceptedJan 31, 2018
  • PublishedMar 23, 2018

Abstract

The development of stimuli-responsive theranostic platforms is of great demand for efficient cancer treatment because they can enhance diagnostic specificity and sensitivity. In this work, we report a pH-responsive theranostic nanoplatform based on FeOOH clusters loaded mesoporous silica nanoparticles (Fe@MSNs). The as-synthesized Fe@MSNs possess activatable T1 magnetic resonance imaging (MRI) performance that can respond to the acidic microenvironment of solid tumor to turn on T1 singals by releasing paramagnetic Fe3+ ions. The Fe@MSNs are biocompatible without appreciable cytotoxicity. Moreover, the unique mesoporous structure endows the Fe@MSNs with significant advantages to effectively deliver chemotherapeutic drug for inhibiting the growth of solid tumor. We believe that this novel pH-responsive theranostic nanoplatform holds great promise in cancer treatment.


Funded by

the National Natural Science Foundation of China(81501461,21635002)

the Open Research Fund for Expensive Instrument Testing of Fuzhou University(2017T026,2017T028)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (81501461, 21635002) and the Open Research Fund for Expensive Instrument Testing of Fuzhou University (2017T026, 2017T028).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Weissleder R, Pittet MJ. Nature, 2008, 452: 580-589 CrossRef PubMed ADS Google Scholar

[2] Smith BR, Gambhir SS. Chem Rev, 2017, 117: 901-986 CrossRef PubMed Google Scholar

[3] Zhan S, Lou X, Xia F. Sci China Chem, 2017, 60: 1267-1276 CrossRef Google Scholar

[4] Gao Z, Deng S, Li J, Wang K, Li J, Wang L, Fan C. Sci China Chem, 2017, 60: 1305-1309 CrossRef Google Scholar

[5] Li J, Cheng F, Huang H, Li L, Zhu JJ. Chem Soc Rev, 2015, 44: 7855-7880 CrossRef PubMed Google Scholar

[6] Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, Nagano T, Watanabe T, Hasegawa A, Choyke PL, Kobayashi H. Nat Med, 2009, 15: 104-109 CrossRef PubMed Google Scholar

[7] Huang G, Zhang KL, Chen S, Li SH, Wang LL, Wang LP, Liu R, Gao J, Yang HH. J Mater Chem B, 2017, 5: 3629-3633 CrossRef Google Scholar

[8] Zhang M, He K, Wu J, Li N, Yuan J, Zhou W, Ye Z, Li Z, Xiao H, Lv Z, Zhang Y, Fang X. Sci China Chem, 2017, 60: 1310-1317 CrossRef Google Scholar

[9] Shin TH, Choi Y, Kim S, Cheon J. Chem Soc Rev, 2015, 44: 4501-4516 CrossRef PubMed Google Scholar

[10] Zhou Z, Bai R, Munasinghe J, Shen Z, Nie L, Chen X. ACS Nano, 2017, 11: 5227-5232 CrossRef Google Scholar

[11] Huang G, Hu J, Zhang H, Zhou Z, Chi X, Gao J. Nanoscale, 2014, 6: 726-730 CrossRef PubMed ADS Google Scholar

[12] Zhang KL, Zhou J, Zhou H, Wu Y, Liu R, Wang LL, Lin WW, Huang G, Yang HH. ACS Appl Mater Interfaces, 2017, 9: 30502-30509 CrossRef Google Scholar

[13] Hu F, Zhao YS. Nanoscale, 2012, 4: 6235-6243 CrossRef PubMed ADS Google Scholar

[14] Huang G, Li H, Chen J, Zhao Z, Yang L, Chi X, Chen Z, Wang X, Gao J. Nanoscale, 2014, 6: 10404-10412 CrossRef PubMed ADS Google Scholar

[15] Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH. ACS Nano, 2009, 3: 3663-3669 CrossRef PubMed Google Scholar

[16] Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T. Angew Chem Int Ed, 2007, 46: 5397-5401 CrossRef PubMed Google Scholar

[17] Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T. J Am Chem Soc, 2011, 133: 12624-12631 CrossRef PubMed Google Scholar

[18] Choi KY, Liu G, Lee S, Chen X. Nanoscale, 2012, 4: 330-342 CrossRef PubMed ADS Google Scholar

[19] Guo T, Lin Y, Li Z, Chen S, Huang G, Lin H, Wang J, Liu G, Yang HH. Nanoscale, 2017, 9: 56-61 CrossRef PubMed Google Scholar

[20] Song XR, Yu SX, Jin GX, Wang X, Chen J, Li J, Liu G, Yang HH. Small, 2016, 12: 1506-1513 CrossRef PubMed Google Scholar

[21] Huang G, Zhu X, Li H, Wang L, Chi X, Chen J, Wang X, Chen Z, Gao J. Nanoscale, 2015, 7: 2667-2675 CrossRef PubMed ADS Google Scholar

[22] Terreno E, Uggeri F, Aime S. J Control Release, 2012, 161: 328-337 CrossRef PubMed Google Scholar

[23] Zhao Z, Wang X, Zhang Z, Zhang H, Liu H, Zhu X, Li H, Chi X, Yin Z, Gao J. ACS Nano, 2015, 9: 2749-2759 CrossRef PubMed Google Scholar

[24] Tang F, Li L, Chen D. Adv Mater, 2012, 24: 1504-1534 CrossRef PubMed Google Scholar

[25] Wen J, Yan H, Xia P, Xu Y, Li H, Sun S. Sci China Chem, 2017, 60: 799-805 CrossRef Google Scholar

[26] Yang P, Gai S, Lin J. Chem Soc Rev, 2012, 41: 3679-3698 CrossRef PubMed Google Scholar

[27] Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J. J Am Chem Soc, 2012, 134: 5722-5725 CrossRef PubMed Google Scholar

[28] Qu Q, Yang S, Feng X. Adv Mater, 2011, 23: 5574-5580 CrossRef PubMed Google Scholar

[29] Brion D. Appl Surf Sci, 1980, 5: 133-152 CrossRef ADS Google Scholar

[30] Wang L, Zhu X, Tang X, Wu C, Zhou Z, Sun C, Deng SL, Ai H, Gao J. Chem Commun, 2015, 51: 4390-4393 CrossRef PubMed Google Scholar

[31] Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Small, 2011, 7: 1322-1337 CrossRef PubMed Google Scholar

  • Scheme 1

    Schematic illustration of the synthesis and application in serving as a pH-responsive theranostic nanoplatform of Fe@MSNs (color online).

  • Figure 1

    (a) TEM image, (b) EDS pattern, (c) XPS Fe 2p spectrum, and (d) hydrodynamic diameter of the Fe@MSNs (color online).

  • Figure 2

    (a) Release profiles of Fe3+ ions from Fe@MSNs at pH 5.4 and pH 7.4 (n=3); (b) r1 values (n=3) and (c) T1-weighted phantom images of Fe@MSNs dispersed in buffers with different pH for different times ([Fe]=0.4 mM); (d) T1-weighted images of HeLa cells after incubating with Fe@MSNs for different times (color online).

  • Figure 3

    (a) Release profiles of DOX from Fe@MSNs-DOX in different pH buffers (n=3); (b) cell viability of HeLa cells after being incubated with free DOX or Fe@MSNs-DOX for 24 h, respectively (n=3) (color online).

  • Figure 4

    (a) T1-weighted images and (b) quantificational analysis of signal-to-noise changes (ΔSNR) of mice at different time points after the injection of Fe@MSNs-DOX (n=3). The regions of tumor are indicated by dash lines. (c) Tumor growth curves of S180 tumor-bearing mice after different treatments (n=5) (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1