logo

SCIENCE CHINA Chemistry, Volume 61, Issue 6: 643-655(2018) https://doi.org/10.1007/s11426-017-9224-3

Optical colorimetric sensor arrays for chemical and biological analysis

More info
  • ReceivedDec 8, 2017
  • AcceptedFeb 11, 2018
  • PublishedApr 20, 2018

Abstract

In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes (including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms (such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here. The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.


Funded by

Beijing Natural Science Foundation(L172018)

National Natural Science Foundation of China(21575032,21775010,81728010)

the Fundamental Research Funds for the Central Universities(PYBZ1707,buctrc201607)

Open Ground from Beijing National Laboratory for Molecular Sciences

Institute of Chemistry

Chinese Academy of Sciences.


Acknowledgment

This work was supported by Beijing Natural Science Foundation (L172018), the National Natural Science Foundation of China (21575032, 21775010, 81728010), the Fundamental Research Funds for the Central Universities (PYBZ1707, buctrc201607, PT1801) and Open Ground from Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Li X, Gao X, Shi W, Ma H. Chem Rev, 2014, 114: 590-659 CrossRef PubMed Google Scholar

[2] He X Y, Zhang H L, Li X H, Shi W, Ma H M. Sci Sin Chim, 2017, 47: 994-999 CrossRef Google Scholar

[3] Qureshi A, Gurbuz Y, Niazi JH. Sens Actuat B-Chem, 2012, 171-172: 62-76 CrossRef Google Scholar

[4] Yin H Y, Tang J, Zhang J L. Sci Sin Chim, 2017, 47: 267-276 CrossRef Google Scholar

[5] Jia MY, Feng L. Chin J Anal Chem, 2013, 41: 795-802 CrossRef Google Scholar

[6] Zhang Y, Huang X, Liu W, Zhang G, Zhang D, Jiang X. Sci China Chem, 2015, 59: 106-113 CrossRef Google Scholar

[7] Zhang P S, Huang Y, Zeng F, Xia X T, Wu S Z. Sci Sin Chim, 2017, 47: 986-993 CrossRef Google Scholar

[8] Gao YT, Zhang H, Jiang T, Yang J, Li B, Li Z, Hua JL. Sci China Chem, 2013, 56: 1204-1212 CrossRef Google Scholar

[9] Askim JR, Mahmoudi M, Suslick KS. Chem Soc Rev, 2013, 42: 8649-8682 CrossRef PubMed Google Scholar

[10] Anzenbacher P Jr., Lubal P, Buček P, Palacios MA, Kozelkova ME. Chem Soc Rev, 2010, 39: 3954-3979 CrossRef PubMed Google Scholar

[11] You L, Zha D, Anslyn EV. Chem Rev, 2015, 115: 7840-7892 CrossRef PubMed Google Scholar

[12] Piriya VSA, Joseph P, Daniel SCGK, Lakshmanan S, Kinoshita T, Muthusamy S. Mater Sci Eng-C, 2017, 78: 1231-1245 CrossRef PubMed Google Scholar

[13] Bigdeli A, Ghasemi F, Golmohammadi H, Abbasi-Moayed S, Nejad MAF, Fahimi-Kashani N, Jafarinejad S, Shahrajabian M, Hormozi-Nezhad MR. Nanoscale, 2017, 9: 16546-16563 CrossRef PubMed Google Scholar

[14] Qiu H, Pu F, Ran X, Ren J, Qu X. Chem Eur J, 2017, 23: 9258-9261 CrossRef PubMed Google Scholar

[15] Pei ZM, Mo ZH, Lü J, Wen ZY. Chin J Anal Chem, 2013, 41: 841 CrossRef Google Scholar

[16] Sener G, Uzun L, Denizli A. ACS Appl Mater Interfaces, 2014, 6: 18395-18400 CrossRef PubMed Google Scholar

[17] Huang Y, Li F, Qin M, Jiang L, Song Y. Angew Chem Int Ed, 2013, 52: 7296-7299 CrossRef PubMed Google Scholar

[18] Mahmoudi M, Lohse SE, Murphy CJ, Suslick KS. ACS Sens, 2016, 1: 17-21 CrossRef Google Scholar

[19] Männel-Croisé C, Meister C, Zelder F. Inorg Chem, 2010, 49: 10220-10222 CrossRef PubMed Google Scholar

[20] Askim JR, Li Z, LaGasse MK, Rankin JM, Suslick KS. Chem Sci, 2016, 7: 199-206 CrossRef Google Scholar

[21] Davis BW, Burris AJ, Niamnont N, Hare CD, Chen CY, Sukwattanasinitt M, Cheng Q. Langmuir, 2014, 30: 9616-9622 CrossRef PubMed Google Scholar

[22] Greene NT, Shimizu KD. J Am Chem Soc, 2005, 127: 5695-5700 CrossRef PubMed Google Scholar

[23] Lu W, Dong X, Qiu L, Yan Z, Meng Z, Xue M, He X, Liu X. J Hazard Mater, 2017, 326: 130-137 CrossRef PubMed Google Scholar

[24] Berliner A, Lee MG, Zhang Y, Park SH, Martino R, Rhodes PA, Yi GR, Lim SH. RSC Adv, 2014, 4: 10672-10675 CrossRef Google Scholar

[25] Zhang Z, Kim DS, Lin CY, Zhang H, Lammer AD, Lynch VM, Popov I, Miljanić OŠ, Anslyn EV, Sessler JL. J Am Chem Soc, 2015, 137: 7769-7774 CrossRef PubMed Google Scholar

[26] Sen A, Albarella J, Carey J, Kim P, Mcnamaraiii W. Sens Actuat B-Chem, 2008, 134: 234-237 CrossRef Google Scholar

[27] Kim P, Albarella J, Carey J, Placek M, Sen A, Wittrig A, Mcnamaraiii W. Sens Actuat B-Chem, 2008, 134: 307-312 CrossRef Google Scholar

[28] Li J, Hou C, Huo D, Yang M, Fa H, Yang P. Sens Actuat B-Chem, 2014, 196: 10-17 CrossRef Google Scholar

[29] Li Z, Fang M, LaGasse MK, Askim JR, Suslick KS. Angew Chem Int Ed, 2017, 56: 9860-9863 CrossRef PubMed Google Scholar

[30] Ma X, Wang M, Chen C, Isbell MA, Wang R, Liu D, Yang Z. Sci China Chem, 2016, 59: 765-769 CrossRef Google Scholar

[31] Hou C, Dong J, Zhang G, Lei Y, Yang M, Zhang Y, Liu Z, Zhang S, Huo D. Biosens Bioelectron, 2011, 26: 3981-3986 CrossRef PubMed Google Scholar

[32] Li X, Wen F, Creran B, Jeong Y, Zhang X, Rotello VM. Small, 2012, 8: 3589-3592 CrossRef PubMed Google Scholar

[33] Tao Y, Auguste DT. Biosens Bioelectron, 2016, 81: 431-437 CrossRef PubMed Google Scholar

[34] Wei X, Wang Y, Zhao Y, Chen Z. Biosens Bioelectron, 2017, 97: 332-337 CrossRef PubMed Google Scholar

[35] Yang J, Lu Y, Ao L, Wang F, Jing W, Zhang S, Liu Y. Senss Actuat B-Chem, 2017, 245: 66-73 CrossRef Google Scholar

[36] Nivedhini Iswarya C, Kiruba Daniel SCG, Sivakumar M. Mater Sci Eng-C, 2017, 75: 393-401 CrossRef PubMed Google Scholar

[37] Qian S, Lin H. Anal Bioanal Chem, 2014, 406: 1903-1908 CrossRef PubMed Google Scholar

[38] Lim SH, Mix S, Xu Z, Taba B, Budvytiene I, Berliner AN, Queralto N, Churi YS, Huang RS, Eiden M, Martino RA, Rhodes P, Banaei N, Land GA. J Clin Microbiol, 2014, 52: 592-598 CrossRef PubMed Google Scholar

[39] Zhang Y, Askim JR, Zhong W, Orlean P, Suslick KS. Analyst, 2014, 139: 1922-1928 CrossRef PubMed ADS Google Scholar

[40] Ghasemi-Varnamkhasti M, Amiri ZS, Tohidi M, Dowlati M, Mohtasebi SS, Silva AC, Fernandes DDS, Araujo MCU. Talanta, 2018, 176: 221-226 CrossRef PubMed Google Scholar

[41] Salinas Y, Ros-Lis JV, Vivancos JL, Martínez-Máñez R, Marcos MD, Aucejo S, Herranz N, Lorente I, Garcia E. Food Control, 2014, 35: 166-176 CrossRef Google Scholar

[42] Huang X, Zou X, Shi J, Guo Y, Zhao J, Zhang J, Hao L. Food Chem, 2014, 145: 549-554 CrossRef PubMed Google Scholar

[43] Zaragozá P, Fuentes A, Ruiz-Rico M, Vivancos JL, Fernández-Segovia I, Ros-Lis JV, Barat JM, Martínez-Máñez R. Food Chem, 2015, 175: 315-321 CrossRef PubMed Google Scholar

[44] Qian S, Lin H. Anal Chem, 2015, 87: 5395-5400 CrossRef PubMed Google Scholar

[45] Kim SY, Ko JA, Kang BS, Park HJ. Food Chem, 2018, 240: 808-816 CrossRef PubMed Google Scholar

[46] Tan L, Chen Z, Zhao Y, Wei X, Li Y, Zhang C, Wei X, Hu X. Biosens Bioelectron, 2016, 85: 414-421 CrossRef PubMed Google Scholar

[47] Kim Y, Johnson RC, Hupp JT. Nano Lett, 2001, 1: 165-167 CrossRef ADS Google Scholar

[48] Bontidean I, Berggren C, Johansson G, Csöregi E, Mattiasson B, Lloyd JR, Jakeman KJ, Brown NL. Anal Chem, 1998, 70: 4162-4169 CrossRef Google Scholar

[49] Udhayakumari D, Suganya S, Velmathi S, MubarakAli D. J Mol Recognit, 2014, 27: 151-159 CrossRef PubMed Google Scholar

[50] Palacios MA, Wang Z, Montes VA, Zyryanov GV, Anzenbacher P. J Am Chem Soc, 2008, 130: 10307-10314 CrossRef PubMed Google Scholar

[51] Wang Z, Palacios MA, Anzenbacher P. Anal Chem, 2008, 80: 7451-7459 CrossRef PubMed Google Scholar

[52] Pu F, Ran X, Ren J, Qu X. Chem Commun, 2016, 52: 3410-3413 CrossRef PubMed Google Scholar

[53] Sun S, Jiang K, Qian S, Wang Y, Lin H. Anal Chem, 2017, 89: 5542-5548 CrossRef PubMed Google Scholar

[54] Anzenbacher Jr. P, Li F, Palacios MA. Angew Chem Int Ed, 2012, 51: 2345-2348 CrossRef Google Scholar

[55] Tan SS, Kim SJ, Kool ET. J Am Chem Soc, 2011, 133: 2664-2671 CrossRef PubMed Google Scholar

[56] Yuen LH, Franzini RM, Wang S, Crisalli P, Singh V, Jiang W, Kool ET. Angew Chem Int Ed, 2014, 53: 5361-5365 CrossRef PubMed Google Scholar

[57] Yuen LH, Franzini RM, Tan SS, Kool ET. J Am Chem Soc, 2014, 136: 14576-14582 CrossRef PubMed Google Scholar

[58] Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T. Chem Soc Rev, 2010, 39: 3936-3953 CrossRef PubMed Google Scholar

[59] Schmidtchen FP, Berger M. Chem Rev, 1997, 97: 1609-1646 CrossRef Google Scholar

[60] Palacios MA, Nishiyabu R, Marquez M, Anzenbacher P. J Am Chem Soc, 2007, 129: 7538-7544 CrossRef PubMed Google Scholar

[61] Ema T, Okuda K, Watanabe S, Yamasaki T, Minami T, Esipenko NA, Anzenbacher Jr. P. Org Lett, 2014, 16: 1302-1305 CrossRef PubMed Google Scholar

[62] Rakow NA, Suslick KS. Nature, 2000, 406: 710-713 CrossRef PubMed Google Scholar

[63] Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS. Anal Chem, 2006, 78: 3591-3600 CrossRef PubMed Google Scholar

[64] Liu Y, Bonizzoni M. J Am Chem Soc, 2014, 136: 14223-14229 CrossRef PubMed Google Scholar

[65] Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS. Anal Chem, 2010, 82: 9433-9440 CrossRef PubMed Google Scholar

[66] Lim SH, Feng L, Kemling JW, Musto CJ, Suslick KS. Nat Chem, 2009, 1: 562-567 CrossRef PubMed ADS Google Scholar

[67] Tabrizchi M, Ilbeigi V. J Hazard Mater, 2010, 176: 692-696 CrossRef PubMed Google Scholar

[68] Desmet C, Blum LJ, Marquette CA. Anal Chem, 2012, 84: 10267-10276 CrossRef PubMed Google Scholar

[69] Moros J, Laserna J́J. Anal Chem, 2011, 83: 6275-6285 CrossRef PubMed Google Scholar

[70] Mosca L, Karimi Behzad S, Anzenbacher Jr. P. J Am Chem Soc, 2015, 137: 7967-7969 CrossRef PubMed Google Scholar

[71] Lin H, Suslick KS. J Am Chem Soc, 2010, 132: 15519-15521 CrossRef PubMed Google Scholar

[72] Aresta A, Palmisano F, Zambonin CG. J Pharmaceut Biomed Anal, 2005, 39: 643-647 CrossRef PubMed Google Scholar

[73] Liu Y, Minami T, Nishiyabu R, Wang Z, Anzenbacher P Jr.. J Am Chem Soc, 2013, 135: 7705-7712 CrossRef PubMed Google Scholar

[74] Pardasani D, Mazumder A, Gupta AK, Kanaujia PK, Tak V, Dubey DK. Rapid Commun Mass Spectrom, 2007, 21: 3109-3114 CrossRef PubMed Google Scholar

[75] Kumar P, Kim KH, Deep A. Biosens Bioelectron, 2015, 70: 469-481 CrossRef PubMed Google Scholar

[76] The Value of OTC Medicine to the United States. Washington DC: Consumer Healthcare Products Association, 2012. Google Scholar

[77] Wingert WE, Mundy LA, Collins GL, Chmara ES. J Forensic Sci, 2007, 52: 487-490 CrossRef PubMed Google Scholar

[78] Minami T, Esipenko NA, Akdeniz A, Zhang B, Isaacs L, Anzenbacher P Jr.. J Am Chem Soc, 2013, 135: 15238-15243 CrossRef PubMed Google Scholar

[79] Cook JA, Vanderjagt DJ, Dasgupta A, Mounkaila G, Glew RS, Blackwell W, Glew RH. Life Sci, 1998, 63: 105-110 CrossRef Google Scholar

[80] Sharpe E, Bradley R, Frasco T, Jayathilaka D, Marsh A, Andreescu S. Senss Actuat B-Chem, 2014, 193: 552-562 CrossRef PubMed Google Scholar

[81] Xie X, Xu W, Liu X. Acc Chem Res, 2012, 45: 1511-1520 CrossRef PubMed Google Scholar

[82] Zhang Y, Jiang T, Tang L. Biosens Bioelectron, 2017, 97: 278-284 CrossRef PubMed Google Scholar

[83] Buryak A, Severin K. J Am Chem Soc, 2005, 127: 3700-3701 CrossRef PubMed Google Scholar

[84] Huo DQ, Zhang GP, Hou CJ, Dong JL, Zhang YC, Liu Z, Luo XG, Fa HB, Zhang SY. Chin J Anal Chem, 2010, 38: 1115-1120 CrossRef Google Scholar

[85] Zhang W, Gao N, Cui J, Wang C, Wang S, Zhang G, Dong X, Zhang D, Li G. Chem Sci, 2017, 8: 6281-6289 CrossRef PubMed Google Scholar

[86] Zhou H, Baldini L, Hong J, Wilson AJ, Hamilton AD. J Am Chem Soc, 2006, 128: 2421-2425 CrossRef PubMed Google Scholar

[87] You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UHF, Rotello VM. Nat Nanotech, 2007, 2: 318-323 CrossRef PubMed ADS Google Scholar

[88] Xu S, Lu X, Yao C, Huang F, Jiang H, Hua W, Na N, Liu H, Ouyang J. Anal Chem, 2014, 86: 11634-11639 CrossRef PubMed Google Scholar

[89] Xu S, Gao T, Feng X, Fan X, Liu G, Mao Y, Yu X, Lin J, Luo X. Biosens Bioelectron, 2017, 97: 203-207 CrossRef Google Scholar

[90] Ran X, Pu F, Ren J, Qu X. Chem Commun, 2015, 51: 2675-2678 CrossRef PubMed Google Scholar

[91] Wang F, Lu Y, Yang J, Chen Y, Jing W, He L, Liu Y. Analyst, 2017, 142: 3177-3182 CrossRef PubMed Google Scholar

[92] Chen W, Li Q, Zheng W, Hu F, Zhang G, Wang Z, Zhang D, Jiang X. Angew Chem Int Ed, 2014, 53: 13734-13739 CrossRef PubMed Google Scholar

[93] Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE. J Am Chem Soc, 2011, 133: 7571-7576 CrossRef PubMed Google Scholar

[94] Lim SH, Mix S, Anikst V, Budvytiene I, Eiden M, Churi Y, Queralto N, Berliner A, Martino RA, Rhodes PA, Banaei N. Analyst, 2016, 141: 918-925 CrossRef PubMed ADS Google Scholar

[95] Phillips RL, Miranda OR, You CC, Rotello VM, Bunz UHF. Angew Chem Int Ed, 2008, 47: 2590-2594 CrossRef PubMed Google Scholar

[96] Li B, Li X, Dong Y, Wang B, Li D, Shi Y, Wu Y. Anal Chem, 2017, 89: 10639-10643 CrossRef PubMed Google Scholar

[97] Perfézou M, Turner A, Merkoçi A. Chem Soc Rev, 2012, 41: 2606-2622 CrossRef PubMed Google Scholar

[98] Bajaj A, Miranda OR, Phillips R, Kim IB, Jerry DJ, Bunz UHF, Rotello VM. J Am Chem Soc, 2010, 132: 1018-1022 CrossRef PubMed Google Scholar

[99] Rana S, Singla AK, Bajaj A, Elci SG, Miranda OR, Mout R, Yan B, Jirik FR, Rotello VM. ACS Nano, 2012, 6: 8233-8240 CrossRef PubMed Google Scholar

[100] Thomas SW, Joly GD, Swager TM. Chem Rev, 2007, 107: 1339-1386 CrossRef PubMed Google Scholar

[101] Rana S, Elci SG, Mout R, Singla AK, Yazdani M, Bender M, Bajaj A, Saha K, Bunz UHF, Jirik FR, Rotello VM. J Am Chem Soc, 2016, 138: 4522-4529 CrossRef PubMed Google Scholar

[102] Tao Y, Ran X, Ren J, Qu X. Small, 2014, 10: 3667-3671 CrossRef PubMed Google Scholar

[103] Huang W, Deng Y, He Y. Biosens Bioelectron, 2017, 91: 89-94 CrossRef PubMed Google Scholar

[104] Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M. Anal Chim Acta, 2015, 882: 58-67 CrossRef PubMed Google Scholar

[105] Wignarajah S, Suaifan GARY, Bizzarro S, Bikker FJ, Kaman WE, Zourob M. Anal Chem, 2015, 87: 12161-12168 CrossRef PubMed Google Scholar

[106] Huo D, Wu Y, Yang M, Fa H, Luo X, Hou C. Food Chem, 2014, 145: 639-645 CrossRef PubMed Google Scholar

[107] Fahimi-Kashani N, Hormozi-Nezhad MR. Anal Chem, 2016, 88: 8099-8106 CrossRef PubMed Google Scholar

[108] Gao L, Ju L, Cui H. J Mater Chem C, 2017, 5: 7753-7758 CrossRef Google Scholar

[109] Huo DQ, Fu BB, Li JJ, Yang M, Shen CH, Luo HB, Hou CJ. Chem J Chin U, 2016, 5: 873–880. Google Scholar

[110] Chen Y, Fu G, Zilberman Y, Ruan W, Ameri SK, Zhang YS, Miller E, Sonkusale SR. Food Control, 2017, 82: 227-232 CrossRef Google Scholar

  • Figure 1

    Illustration for the sensing mechanism of “1 vs. 1” probes (a), and the sensing mechanism of “N vs. N” probes (b) (color online).

  • Figure 2

    (a) LDA canonical score plots corresponding to the response of the organic molecular sensor array to 9 bottled water brands with different metal ions. The data set contains 9 brands and 2 blanks, 8 trials each. LDA shows 100% correct classification for all water brands [51]. (b) HCA corresponding to the response of the CPN-based sensor array to metal ions [52]. (c) Fluorescence responses of the CDs-metal ions sensor array to five phosphate anions, and (d) PCA plot for the discrimination of the phosphate anions and other interfering substances with the fluorescence signal changes [53] (color online).

  • Figure 3

    (a) Colorimetric sensor array with 36 different sensing units response to VOCs visualized as color patterns, and (b) PCA plot for the discrimination of the VOCs [63]. (c) HCA analysis for the response of the chemical response indicators sensor array to 20 industrial toxic gases at their dangerous concentration. HCA shows 100% correct classification for industrial toxic gases [65]. (d) The fluorescence modulation by the competitive binding between the quenched G5-dye complexes and the organophosphate analytes [64] (color online).

  • Figure 4

    (a) The absorbance response and two-dimensional LDA plot of the AuNPs sensor array in the presence of different proteins; (b) HCA corresponding to the response of the sensor array to proteins [91]. (c) PCA plot of the sensor array comprised of five organic molecules probes incubated with eight kinds of bacteria [92] (color online).

  • Figure 5

    (a) Top: the details of Chinese green tea samples; bottom: color change profiles for Chinese green tea with the colorimetric sensor array comprised of different dyes [106]. (b) The colorimetric sensor array for detection of OPs by unmodified AuNPs [107]. (c) PCA plot for the discrimination of the five pesticides by ABEI-GQDs [108] (color online).

  • Table 1   Applications of optical colorimetric sensor array

    Analyte

    Sensor array

    Statistical analysis

    Ref.

    Metal ions

    DNA-Dye

    PCA, HCA

    [14]

    Hg2+

    AuNPs-Dye

    PCA

    [15]

    Metal ions

    MUA-AuNPs-amino acid

    HCA

    [16]

    Metal ions

    8-HQ-PCs microchip

    LDA, HCA

    [17]

    Nanoparticles

    Dyes

    PCA, HCA

    [18]

    Anions

    Metal-metal indicators

    UV-Vis

    [19]

    Explosives

    Indicators

    HCA

    [20]

    Amines

    PDA-enhanced Nanofiber

    PCA

    [21]

    Amines

    MIPs

    LDA

    [22]

    Nitroaromatics

    MIPs

    PCA

    [23]

    Nitroaromatics

    Pattern glass fiber

    HCA

    [24]

    Organic solvents

    Porphyrin-anion supramolecular assembly

    LDA

    [25]

    Toxic industrial gases

    Dye

    PCA

    [26,27]

    Aldehydes

    Dye and DNPH

    HCA, DA

    [28]

    Aldehydes and ketones

    Dyes

    PCA, HCA

    [29]

    DNA

    Double-anchored AuNPs

    UV-Vis

    [30]

    Proteins

    Porphyrin derivative-Dye

    PCA

    [31]

    Proteins

    Fe3O4 nanoparticles

    LDA

    [32]

    Proteins and bacterial

    Nanodot-GO

    LDA

    [33]

    Proteins

    DNA-AuNPs

    LDA, HCA

    [34,35]

    Dopamine

    Ag-Au NPs

    UV-Vis

    [36]

    Biological thiols

    Metal ion-indicator

    HCA

    [37]

    Sepsis-causing bacteria

    73 indicators and 3 black fiducial markers

    PCA, HCA

    [38]

    Pathogenic fungi

    Nanoporous dyes

    LDA, TDA

    [39]

    Cumin seeds

    Metal-oxide

    LDA

    [40]

    Sausage Spoilage

    pH indicator, chromogenic reagent, inorganic material

    PCA, PLS

    [41]

    Pork spoilage

    Natural pigment

    PCA, PLS

    [42]

    Squid spoilage

    Dye-inorganic material

    PCA, PLS

    [43]

    OPs and

    Carbamate Pesticides

    Thiocholine

    and H2O2 indicator

    HCA, PCA

    [44]

    Coffees roast degree

    pH indicator, DNPH, PEG-400

    PCA, HCA, PLSR

    [45]

    MUA-: 11-mercaptoundecanoic acid; 8-: HQ-8-hydroxyquinoline; PCs-: photonic crystals; PDA-: polydiacetylene; MIP-: molecularly imprinted polymer; DNPH-: 2,4-dinitrophenylhydrazine; GO-: graphene oxide; PEG-: polyethylene glycol; TDA-: tensor discriminant analysis; PLS-: partial least squares studies; AuNPs-: gold nanoparticle; OPs-: organophosphorus pesticides.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1