logo

SCIENCE CHINA Chemistry, Volume 61, Issue 5: 515-525(2018) https://doi.org/10.1007/s11426-018-9244-0

Recent progress on Ge oxide anode materials for lithium-ion batteries

More info
  • ReceivedFeb 8, 2018
  • AcceptedMar 9, 2018
  • PublishedMar 23, 2018

Abstract

In recent years, germanium oxides have attracted increasing attention as a new type of anode material to replace graphite for lithium-ion batteries because of their high capacity, appropriate voltage potential, and good safety properties. In this review, recent important advances for Ge oxide anode materials are summarized. The limitations of Ge oxide anode materials are discussed, and potential research directions are presented.


Funded by

the National Science Foundation of China(51502009,51532001)

the National Key Basic Research Program of China(2014CB31802)

and the Science Foundation of Henan province(162300410209)


Acknowledgment

This work was supported by the National Science Foundation of China (51502009, 51532001, 21675109), the National Key Basic Research Program of China (2014CB31802), and the Science Foundation of Henan province (162300410209).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Wei W, Wang Z, Liu Z, Liu Y, He L, Chen D, Umar A, Guo L, Li J. J Power Sources, 2013, 238: 376-387 CrossRef Google Scholar

[2] Billaud J, Bouville F, Magrini T, Villevieille C, Studart AR. Nat Energy, 2016, 1: 16097 CrossRef ADS Google Scholar

[3] Seng KH, Park M, Guo ZP, Liu HK, Cho J. Nano Lett, 2013, 13: 1230-1236 CrossRef PubMed ADS Google Scholar

[4] Xiao X, Liu X, Zhao H, Chen D, Liu F, Xiang J, Hu Z, Li Y. Adv Mater, 2012, 24: 5762-5766 CrossRef PubMed Google Scholar

[5] Wu XL, Guo YG, Wan LJ. Chem Asian J, 2013, 8: 1948-1958 CrossRef PubMed Google Scholar

[6] Cui G, Gu L, Zhi L, Kaskhedikar N, van Aken PA, Müllen K, Maier J. Adv Mater, 2008, 20: 3079-3083 CrossRef Google Scholar

[7] Wei W, Tian A, Jia F, Wang K, Qu P, Xu M. RSC Adv, 2016, 6: 87440-87445 CrossRef Google Scholar

[8] Xue DJ, Xin S, Yan Y, Jiang KC, Yin YX, Guo YG, Wan LJ. J Am Chem Soc, 2012, 134: 2512-2515 CrossRef PubMed Google Scholar

[9] Seo MH, Park M, Lee KT, Kim K, Kim J, Cho J. Energy Environ Sci, 2011, 4: 425-428 CrossRef Google Scholar

[10] Park MH, Kim K, Kim J, Cho J. Adv Mater, 2010, 22: 415-418 CrossRef PubMed Google Scholar

[11] Wei W, Guo L. Part Part Syst Charact, 2013, 30: 658-661 CrossRef Google Scholar

[12] Xiao W, Zhou J, Yu L, Wang D, Lou XWD. Angew Chem Int Ed, 2016, 55: 7427-7431 CrossRef PubMed Google Scholar

[13] Liu J, Song K, Zhu C, Chen CC, van Aken PA, Maier J, Yu Y. ACS Nano, 2014, 8: 7051-7059 CrossRef PubMed Google Scholar

[14] Li X, Liang J, Hou Z, Zhang W, Wang Y, Zhu Y, Qian Y. J Power Sources, 2015, 293: 868-875 CrossRef ADS Google Scholar

[15] Ngo DT, Le HTT, Kim C, Lee JY, Fisher JG, Kim ID, Park CJ. Energy Environ Sci, 2015, 8: 3577-3588 CrossRef Google Scholar

[16] Liu D, Liu ZJ, Li X, Xie W, Wang Q, Liu Q, Fu Y, He D. Small, 2017, 13: 1702000 CrossRef PubMed Google Scholar

[17] Chen JS, Lou XWD. Small, 2013, 9: 1877-1893 CrossRef PubMed Google Scholar

[18] Yin YX, Xin S, Wan LJ, Li CJ, Guo YG. Sci China Chem, 2012, 55: 1314-1318 CrossRef Google Scholar

[19] Guo H, Ruan B, Liu L, Zhang L, Tao Z, Chou S, Wang J, Liu H. Small, 2017, 13: 1700920 CrossRef PubMed Google Scholar

[20] Li D, Wang H, Zhou T, Zhang W, Liu HK, Guo Z. Adv Energy Mater, 2017, 7: 1700488 CrossRef Google Scholar

[21] Wu S, Han C, Iocozzia J, Lu M, Ge R, Xu R, Lin Z. Angew Chem Int Ed, 2016, 55: 7898-7922 CrossRef PubMed Google Scholar

[22] Hu Z, Zhang S, Zhang C, Cui G. Coordin Chem Rev, 2016, 326: 34-85 CrossRef Google Scholar

[23] Vaughn DD II, Schaak RE. Chem Soc Rev, 2013, 42: 2861-2879 CrossRef PubMed Google Scholar

[24] Xiao X, Li X, Zheng S, Shao J, Xue H, Pang H. Adv Mater Interfaces, 2017, 4: 1600798 CrossRef Google Scholar

[25] Li X, Liang J, Hou Z, Zhu Y, Wang Y, Qian Y. Chem Commun, 2014, 50: 13956-13959 CrossRef PubMed Google Scholar

[26] Wei W, Jia F, Qu P, Huang Z, Wang H, Guo L. Nanoscale, 2017, 9: 3961-3968 CrossRef PubMed Google Scholar

[27] McNulty D, Geaney H, Buckley D, O'Dwyer C. Nano Energy, 2018, 43: 11-21 CrossRef Google Scholar

[28] Lin YM, Klavetter KC, Heller A, Mullins CB. J Phys Chem Lett, 2013, 4: 999-1004 CrossRef PubMed Google Scholar

[29] Son Y, Park M, Son Y, Lee JS, Jang JH, Kim Y, Cho J. Nano Lett, 2014, 14: 1005-1010 CrossRef PubMed ADS Google Scholar

[30] Chen Y, Yan C, Schmidt OG. Adv Energy Mater, 2013, 3: 1269-1274 CrossRef Google Scholar

[31] Jia H, Kloepsch R, He X, Badillo JP, Winter M, Placke T. J Mater Chem A, 2014, 2: 17545-17550 CrossRef Google Scholar

[32] Ngo DT, Kalubarme RS, Le HTT, Park CN, Park CJ. Nanoscale, 2015, 7: 2552-2560 CrossRef PubMed ADS Google Scholar

[33] Wang XL, Han WQ, Chen H, Bai J, Tyson TA, Yu XQ, Wang XJ, Yang XQ. J Am Chem Soc, 2011, 133: 20692-20695 CrossRef PubMed Google Scholar

[34] Fang Z, Qiang T, Fang J, Song Y, Ma Q, Ye M, Qiang F, Geng B. Electrochim Acta, 2015, 151: 453-458 CrossRef Google Scholar

[35] Jin S, Li N, Cui H, Wang C. Nano Energy, 2013, 2: 1128-1136 CrossRef Google Scholar

[36] Chen Z, Yan Y, Xin S, Li W, Qu J, Guo YG, Song WG. J Mater Chem A, 2013, 1: 11404 CrossRef Google Scholar

[37] Li W, Yin YX, Xin S, Song WG, Guo YG. Energy Environ Sci, 2012, 5: 8007 CrossRef Google Scholar

[38] Rahman MM, Sultana I, Yang T, Chen Z, Sharma N, Glushenkov AM, Chen Y. Angew Chem Int Ed, 2016, 55: 16059-16063 CrossRef PubMed Google Scholar

[39] Jin S, Yang G, Song H, Cui H, Wang C. ACS Appl Mater Interfaces, 2015, 7: 24932-24943 CrossRef Google Scholar

[40] Yi R, Feng J, Lv D, Gordin ML, Chen S, Choi D, Wang D. Nano Energy, 2013, 2: 498-504 CrossRef Google Scholar

[41] Schroder KW, Celio H, Webb LJ, Stevenson KJ. J Phys Chem C, 2012, 116: 19737-19747 CrossRef Google Scholar

[42] Mei L, Mao M, Chou S, Liu H, Dou S, Ng DHL, Ma J. J Mater Chem A, 2015, 3: 21699-21705 CrossRef Google Scholar

[43] Li M, Zhou D, Song WL, Li X, Fan LZ. J Mater Chem A, 2015, 3: 19907-19912 CrossRef Google Scholar

[44] Yang J, Wang H, Hu P, Qi J, Guo L, Wang L. Small, 2015, 11: 3744-3749 CrossRef PubMed Google Scholar

[45] Javadi M, Yang Z, Veinot JGC. Chem Commun, 2014, 50: 6101-6104 CrossRef PubMed Google Scholar

[46] Zhang J, Yu T, Chen J, Liu H, Su D, Tang Z, Xie J, Chen L, Yuan A, Kong Q. Ceram Int, 2018, 44: 1127-1133 CrossRef Google Scholar

[47] Sun Y, Xu W, Fu X, Sun Z, Wang J, Zhang J, Rosenbach D, Qi R, Jiang K, Jing C, Hu Z, Ma X, Chu J. J Mater Chem C, 2017, 5: 12792-12799 CrossRef Google Scholar

[48] Song H, Zhao B, Yan S, Li K, Xu X, Shi Y. J Nanosci Nanotechnol, 2017, 17: 9036-9041 CrossRef Google Scholar

[49] Ngo DT, Le HTT, Kalubarme RS, Lee JY, Park CN, Park CJ. J Mater Chem A, 2015, 3: 21722-21732 CrossRef Google Scholar

[50] Choi SH, Jung KY, Kang YC. ACS Appl Mater Interfaces, 2015, 7: 13952-13959 CrossRef Google Scholar

[51] Zou F, Hu X, Qie L, Jiang Y, Xiong X, Qiao Y, Huang Y. Nanoscale, 2014, 6: 924-930 CrossRef PubMed ADS Google Scholar

[52] Wei W, Jia F, Wang K, Luo B, Qu P, Xu M. Mater Lett, 2017, 196: 157-160 CrossRef Google Scholar

[53] Xu MF, Shi XB, Jin ZM, Zu FS, Liu Y, Zhang L, Wang ZK, Liao LS. ACS Appl Mater Interfaces, 2013, 5: 10866-10873 CrossRef PubMed Google Scholar

[54] Wang ZK, Li M, Yuan DX, Shi XB, Ma H, Liao LS. ACS Appl Mater Interfaces, 2015, 7: 9645-9651 CrossRef Google Scholar

[55] Viswanathamurthi P, Bhattarai N, Kim HY, Khil MS, Lee DR, Suh EK. J Chem Phys, 2004, 121: 441-445 CrossRef PubMed ADS Google Scholar

[56] Armelao L, Heigl F, Kim PSG, Rosenberg RA, Regier TZ, Sham TK. J Phys Chem C, 2012, 116: 14163-14169 CrossRef Google Scholar

[57] Zou X, Liu B, Li Q, Li Z, Liu B, Wu W, Zhao Q, Sui Y, Li D, Zou B, Cui T, Zou G, Mao HK. CrystEngComm, 2011, 13: 979-984 CrossRef Google Scholar

[58] Zhang W, Pang H, Sun W, Lv LP, Wang Y. Electrochem Commun, 2017, 84: 80-85 CrossRef Google Scholar

[59] Wu HP, Liu JF, Ge MY, Niu L, Zeng YW, Wang YW, Lv GL, Wang LN, Zhang GQ, Jiang JZ. Chem Mater, 2006, 18: 1817-1820 CrossRef Google Scholar

[60] Chen X, Cai Q, Zhang J, Chen Z, Wang W, Wu Z, Wu Z. Mater Lett, 2007, 61: 535-537 CrossRef Google Scholar

[61] Chiu YW, Huang MH. J Phys Chem C, 2009, 113: 6056-6060 CrossRef Google Scholar

[62] Liu W, Jiang J, Wang H, Deng C, Wang F, Peng G. J Energy Chem, 2016, 25: 817-824 CrossRef Google Scholar

[63] Medvedev AG, Mikhaylov AA, Grishanov DA, Yu DYW, Gun J, Sladkevich S, Lev O, Prikhodchenko PV. ACS Appl Mater Interfaces, 2017, 9: 9152-9160 CrossRef Google Scholar

[64] Jahel A, Darwiche A, Matei Ghimbeu C, Vix-Guterl C, Monconduit L. J Power Sources, 2014, 269: 755-759 CrossRef ADS Google Scholar

[65] Qiu H, Zeng L, Lan T, Ding X, Wei M. J Mater Chem A, 2015, 3: 1619-1623 CrossRef Google Scholar

[66] Wei X, Li W, Zeng L, Yu Y. Part Part Syst Charact, 2016, 33: 524-530 CrossRef Google Scholar

[67] Jia F, Song L, Wei W, Qu P, Xu M. New J Chem, 2015, 39: 689-695 CrossRef Google Scholar

[68] Xu R, Wu S, Du Y, Zhang Z. Chem Eng J, 2016, 296: 349-355 CrossRef Google Scholar

[69] Yoon S, Jung SH, Jung KN, Woo SG, Cho W, Jo YN, Cho KY. Electrochim Acta, 2016, 188: 120-125 CrossRef Google Scholar

[70] Zeng L, Huang X, Chen X, Zheng C, Qian Q, Chen Q, Wei M. ACS Appl Mater Interfaces, 2016, 8: 232-239 CrossRef Google Scholar

[71] Lei D, Qu B, Lin HT, Wang T. Ceram Int, 2015, 41: 10308-10313 CrossRef Google Scholar

[72] Hwang J, Jo C, Kim MG, Chun J, Lim E, Kim S, Jeong S, Kim Y, Lee J. ACS Nano, 2015, 9: 5299-5309 CrossRef Google Scholar

[73] Kajita T, Itoh T. J Electrochem Soc, 2016, 163: A552-A556 CrossRef Google Scholar

[74] Kajita T, Itoh T. RSC Adv, 2016, 6: 102109-102115 CrossRef Google Scholar

[75] Lv D, Gordin ML, Yi R, Xu T, Song J, Jiang YB, Choi D, Wang D. Adv Funct Mater, 2014, 24: 1059-1066 CrossRef Google Scholar

[76] Ma Q, Ye M, Zeng P, Wang X, Geng B, Fang Z. RSC Adv, 2016, 6: 15952-15959 CrossRef Google Scholar

[77] Li W, Wang X, Liu B, Luo S, Liu Z, Hou X, Xiang Q, Chen D, Shen G. Chem Eur J, 2013, 19: 8650-8656 CrossRef PubMed Google Scholar

[78] Chen Y, Lin Y, Du N, Xiao C, Wu S, Zhang Y, Yang D. Energy Technol, 2017, 5: 1656-1662 CrossRef Google Scholar

[79] Ding C, Zhao Y, Yan D, Su D, Zhao Y, Zhou H, Li J, Jin H. Electrochim Acta, 2017, 251: 129-136 CrossRef Google Scholar

[80] Liu W, Zhou T, Zheng Y, Liu J, Feng C, Shen Y, Huang Y, Guo Z. ACS Appl Mater Interfaces, 2017, 9: 9778-9784 CrossRef Google Scholar

[81] Li HH, Wu XL, Zhang LL, Fan CY, Wang HF, Li XY, Sun HZ, Zhang JP, Yan Q. ACS Appl Mater Interfaces, 2016, 8: 31722-31728 CrossRef Google Scholar

[82] Choi SH, Kim JH, Choi YJ, Kang YC. Electrochim Acta, 2016, 190: 766-774 CrossRef Google Scholar

[83] Wang W, Qin J, Cao M. ACS Appl Mater Interfaces, 2016, 8: 1388-1397 CrossRef Google Scholar

[84] Wu S, Wang R, Wang Z, Lin Z. Nanoscale, 2014, 6: 8350-8358 CrossRef PubMed ADS Google Scholar

[85] Li W, Chen D, Shen G. J Mater Chem A, 2015, 3: 20673-20680 CrossRef Google Scholar

[86] Zou F, Hu X, Sun Y, Luo W, Xia F, Qie L, Jiang Y, Huang Y. Chem Eur J, 2013, 19: 6027-6033 CrossRef PubMed Google Scholar

[87] Li D, Feng C, Liu HK, Guo Z. Sci Rep, 2015, 5: 11326 CrossRef PubMed ADS Google Scholar

[88] Liu X, Wang J, Liu X, Chi C, Liu S, Zhao J, Li Y. J Electroanal Chem, 2016, 783: 15-21 CrossRef Google Scholar

[89] Liu X, Ma X, Wang J, Liu X, Chi C, Liu S, Zhao J, Li Y. RSC Adv, 2016, 6: 107040-107048 CrossRef Google Scholar

[90] Ge R, Wu S, Du Y, Zhou W, Zhang Z. Carbon, 2016, 107: 352-360 CrossRef Google Scholar

[91] Wang L, Zhang X, Shen G, Peng X, Zhang M, Xu J. Nanotechnology, 2016, 27: 095602 CrossRef PubMed ADS Google Scholar

[92] Feng J, Ci L, Qi Y, Lun N, Xiong S, Qian Y. Mater Res Bull, 2014, 57: 238-242 CrossRef Google Scholar

  • Figure 1

    Scanning electron microscopy (SEM) images of GeO2 nanocubes (a) and GeO2 nanospindles (b); (c) cycling stabilities of GeO2 anodes at 0.1 C; (d) np-GeO2 electrode cycled at various current densities [25] (color online).

  • Figure 2

    SEM images of GeO2 nanorods at low (a) and high (b) magnifications. (c) Cycling performances of GeO2 nanorod electrodes at a current density of 0.2 A g−1. (d) Rate performance of GeO2 nanorods (inset shows the discharge curves of the GeO2 electrode at different current rates from 0.2 to 5 A g−1) [26] (color online).

  • Figure 3

    SEM (a) and transmission electron microscopy (TEM) (b) images of GeO2 IOs. (c) Rate capability test for a GeO2 IOs over 100 cycles at specific currents from 250 to 1000 mA g−1 [27] (color online).

  • Figure 4

    High-resolution TEM images of ∼2-nm (a), ∼6-nm (b), ∼10-nm (c), and ∼35-nm (d) GeO2 nanoparticles. Cycle performances of the ∼2, ∼6, ∼10, and ∼35-nm GeO2 nanoparticles at rates of 0.2 C (e) and 1 C (f) [29] (color online).

  • Figure 5

    SEM images of the GeO2 samples prepared without (a) and with (b) a surfactant. (c) Reversible capacities and coulombic efficiencies of GeO2 nanoparticle electrodes cycled at a current density of 220 mA g−1(0.2 C) in different electrolytes [28].

  • Figure 6

    SEM images of the GeO2/grapheme nanocomposites at low (a) and high (b) magnifications. (c) Cycling performance of GeO2/grapheme nanocomposites and commercial GeO2 particles at a current density of 200 mA g−1. (d) High rate performance of GeO2/grapheme nanocomposites [11] (color online).

  • Figure 7

    SEM images of the multilayer graphene/GeO2 tubular structures: (a) top view, scale bar=20 μm; (b) magnified SEM image of a single rolled-up graphene/GeO2 microtube, scale bar=2 μm. Cycling performance of graphene/GeO2: (c) for 100 cycles at 0.1 C; (d) for 700 cycles at 1 C [30] (color online).

  • Figure 8

    Schematic for the formation of GeO2/C from a germanium citrate complex [32] (color online).

  • Figure 9

    Low- (a) and high-magnification (b) TEM images of the GeO2/MC composite. (c) Cycling performance of the GeO2/MC composite at a constant rate of 1 C (1500 mA g−1). (d) High rate performance of the GeO2/MC composite [64] (color online).

  • Figure 10

    (a) Low-magnification SEM image of GeOx, (b) enlarged SEM image corresponding to the area enclosed by the square in (a). (c) TEM image corresponding to the area enclosed by the square in (b). (d) Reversible capacities of GeOx in the half cell. (e) Reversible discharge capacity of Li(NiCoMn)1/3O2 in the full cell (anode material: GeOx) [33] (color online).

  • Figure 11

    (a) Synthetic illustration of GeOx/RGO nanocomposites. (b) Typical charge/discharge curves (second cycle at each rate) of GeOx/RGO at various C rates (1 C=1000 mA g−1). (c) Rate capability and cycling performance of GeOx/RGO and GeOx at various C rates [75] (color online).

  • Figure 12

    (a) SEM image of VAG@GeOx; (b1) TEM image of a separate VAG@GeOx nanoflake, and the corresponding (b2) C, (b3) O, and (b4) Ge elemental mappings. (c) Cycling performance of the electrodes with different loads, 70 wt% and 61 wt%, both tested at a rate of C/3. (d) Rate performance of the electrode (70 wt% GeOx) at rates of 0.5, 1, 3, 6, and 15 C [35] (color online).

  • Figure 13

    (a) Synthesis process for the Zn2GeO4/g-C3N4 hybrids. Low- (b) and high-magnification (c) SEM images of Zn2GeO4/g-C3N4. (d) Cycling performance of bare g-C3N4, pure Zn2GeO4 nanoparticles, and Zn2GeO4/g-C3N4 at 200 mA g−1. (e) Rate performance of Zn2GeO4/g-C3N4 and pure Zn2GeO4 (Zn2GeO4/g-C3N4–10 and Zn2GeO4/g-C3N4–10 represent weight ratios of g-C3N4 of 10% and 30%, respectively) [85] (color online).

  • Figure 14

    SEM (a) and TEM images (b) of an amorphous Zn2GeO4 sample. (c) Charge-discharge profiles of an amorphous Zn2GeO4 sample at various cycles with a current density of 400 mA g−1. (d) Rate performance of the Zn2GeO4 sample [40] (color online).

  • Table 1   Reported capacities for Ge oxides

    Ge oxides

    Specific capacity (mA h g−1)

    Ref.

    GeO2 nanospindles

    1340 (50th cycle)

    [25]

    GeO2 nanorods

    917 (1st cycle)

    [26]

    Macroporous GeO2

    632 (500th cycle)

    [27]

    GeO2 nanoparticles

    600 (500th cycle)

    [28]

    GeO2 nanoparticles

    816 (100th cycle)

    [29]

    GeO2/graphene

    1110.6 (1st cycle)

    [11]

    Graphene/GeO2 tubular

    919 (100th cycle)

    [30]

    GeO2/graphene

    1021 (1st cycle)

    [31]

    GeO2/C

    914 (1st cycle)

    [32]

    GeOx nanoparticles

    1250 (600th cycle)

    [33]

    GeOx hollow framework

    1315 (1st cycle)

    [34]

    GeOx/graphene

    1008 (100th cycle)

    [35]

    CuGeO3/graphene

    780 (130th cycle)

    [36]

    Ca2Ge7O16

    601 (100th cycle)

    [37]

    Li2GeO3 clusters

    725 (1st cycle)

    [38]

    Co2GeO4 nanosheets

    1026 (150th cycle)

    [39]

    Zn2GeO4

    1250 (500th cycle)

    [40]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1