logo

SCIENCE CHINA Chemistry, Volume 61, Issue 10: 1261-1273(2018) https://doi.org/10.1007/s11426-018-9267-3

Artificial molecular machines that can perform work

More info
  • ReceivedMar 18, 2018
  • AcceptedApr 21, 2018
  • PublishedJul 11, 2018

Abstract

An artificial molecular machine consists of molecule or substituent components jointed together in a specific way so that their mutual displacements could be initiated using appropriate outside stimuli. Such an ability of performing mechanical motions by consuming external energy has endowed these tiny machines with vast fascinating potential applications in areas such as actuators, manipulating atoms/molecules, drug delivery, molecular electronic devices, etc. To date, although vast kinds of molecular machine archetypes have been synthesized in facile ways, they are inclined to be defined as switches but not true machines in most cases because no useful work has been done during a working cycle. More efforts need to be devoted on the utilization and amplification of the nanoscale mechanical motions among synthetic molecular machines to accomplish useful tasks. Here we highlight some of the recent advances relating to molecular machines that can perform work on different length scales, ranging from microscopic levels to macroscopic ones.


Funded by

the NSFC/China(21572063,21372076)

the Science Fund for Creative Research Groups(21421004)

the Programme of Introducing Talents of Discipline to Universities(B16017)

the Fundamental Research Funds for the Central Universities(222201717003)


Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (21572063, 21372076), the Science Fund for Creative Research Groups (21421004), the Programme of Introducing Talents of Discipline to Universities (B16017) and the Fundamental Research Funds for the Central Universities (222201717003).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Bruns CJ, Stoddart JF. Acc Chem Res, 2014, 47: 2186-2199 CrossRef PubMed Google Scholar

[2] Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Chem Rev, 2015, 115: 10081-10206 CrossRef PubMed Google Scholar

[3] Kay ER, Leigh DA. Angew Chem Int Ed, 2015, 54: 10080-10088 CrossRef PubMed Google Scholar

[4] Qu DH, Wang QC, Zhang QW, Ma X, Tian H. Chem Rev, 2015, 115: 7543-7588 CrossRef PubMed Google Scholar

[5] Abendroth JM, Bushuyev OS, Weiss PS, Barrett CJ. ACS Nano, 2015, 9: 7746-7768 CrossRef Google Scholar

[6] Cheng C, McGonigal PR, Stoddart JF, Astumian RD. ACS Nano, 2015, 9: 8672-8688 CrossRef Google Scholar

[7] Xue M, Yang Y, Chi X, Yan X, Huang F. Chem Rev, 2015, 115: 7398-7501 CrossRef PubMed Google Scholar

[8] Li H, Qu DH. Sci China Chem, 2015, 58: 916-921 CrossRef Google Scholar

[9] Colasson B, Credi A, Ragazzon G. Coord Chem Rev, 2016, 325: 125-134 CrossRef Google Scholar

[10] Cheng C, Stoddart JF. ChemPhysChem, 2016, 17: 1780-1793 CrossRef PubMed Google Scholar

[11] Bruns CJ, Stoddart JF. The Nature of the Mechanical Bond: From Molecules to Machines. New Jersey: John Wiley & Sons, 2016. Google Scholar

[12] Kassem S, van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Chem Soc Rev, 2017, 46: 2592-2621 CrossRef PubMed Google Scholar

[13] Zhang M, Yan X, Huang F, Niu Z, Gibson HW. Acc Chem Res, 2014, 47: 1995-2005 CrossRef PubMed Google Scholar

[14] Zhang ZJ, Han M, Zhang HY, Liu Y. Org Lett, 2013, 15: 1698-1701 CrossRef PubMed Google Scholar

[15] Meng Z, Xiang JF, Chen CF. Chem Sci, 2014, 5: 1520-1525 CrossRef Google Scholar

[16] Wang WK, Xu ZY, Zhang YC, Wang H, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 7490-7493 CrossRef PubMed Google Scholar

[17] Gao C, Luan ZL, Zhang Q, Yang S, Rao SJ, Qu DH, Tian H. Org Lett, 2017, 19: 1618-1621 CrossRef PubMed Google Scholar

[18] Kistemaker JCM, Štacko P, Roke D, Wolters AT, Heideman GH, Chang MC, van der Meulen P, Visser J, Otten E, Feringa BL. J Am Chem Soc, 2017, 139: 9650-9661 CrossRef PubMed Google Scholar

[19] Cao ZQ, Wang YC, Zou AH, London G, Zhang Q, Gao C, Qu DH. Chem Commun, 2017, 53: 8683-8686 CrossRef PubMed Google Scholar

[20] Yang S, Luan Z, Gao C, Yu J, Qu D. Sci China Chem, 2018, 61: 306-310 CrossRef Google Scholar

[21] Feringa BL. Angew Chem Int Ed, 2017, 56: 11060-11078 CrossRef PubMed Google Scholar

[22] Sauvage JP. Angew Chem Int Ed, 2017, 56: 11080-11093 CrossRef PubMed Google Scholar

[23] Stoddart JF. Angew Chem Int Ed, 2017, 56: 11094-11125 CrossRef PubMed Google Scholar

[24] Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Angew Chem Int Ed, 2011, 50: 7524-7528 CrossRef PubMed Google Scholar

[25] Coskun A, Spruell JM, Barin G, Dichtel WR, Flood AH, Botros YY, Stoddart JF. Chem Soc Rev, 2012, 41: 4827-4859 CrossRef PubMed Google Scholar

[26] Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Acc Chem Res, 2011, 44: 903-913 CrossRef PubMed Google Scholar

[27] Baroncini M, Silvi S, Venturi M, Credi A. Angew Chem Int Ed, 2012, 51: 4223-4226 CrossRef PubMed Google Scholar

[28] Ragazzon G, Baroncini M, Silvi S, Venturi M, Credi A. Nat Nanotech, 2015, 10: 70-75 CrossRef PubMed ADS Google Scholar

[29] Sevick E. Nat Nanotech, 2015, 10: 18-19 CrossRef PubMed ADS Google Scholar

[30] Li H, Cheng C, McGonigal PR, Fahrenbach AC, Frasconi M, Liu WG, Zhu Z, Zhao Y, Ke C, Lei J, Young RM, Dyar SM, Co DT, Yang YW, Botros YY, Goddard Iii WA, Wasielewski MR, Astumian RD, Stoddart JF. J Am Chem Soc, 2013, 135: 18609-18620 CrossRef PubMed Google Scholar

[31] Cheng C, McGonigal PR, Schneebeli ST, Li H, Vermeulen NA, Ke C, Stoddart JF. Nat Nanotech, 2015, 10: 547-553 CrossRef PubMed ADS Google Scholar

[32] Pezzato C, Nguyen MT, Cheng C, Kim DJ, Otley MT, Stoddart JF. Tetrahedron, 2017, 73: 4849-4857 CrossRef Google Scholar

[33] Kassem S, Lee ATL, Leigh DA, Markevicius A, Solà J. Nat Chem, 2016, 8: 138-143 CrossRef PubMed ADS Google Scholar

[34] Su X, Aprahamian I. Org Lett, 2011, 13: 30-33 CrossRef PubMed Google Scholar

[35] Kassem S, Lee ATL, Leigh DA, Marcos V, Palmer LI, Pisano S. Nature, 2017, 549: 374-378 CrossRef PubMed ADS Google Scholar

[36] Kelly TR, Snapper ML. Nature, 2017, 549: 336-337 CrossRef PubMed ADS Google Scholar

[37] Chen J, Wezenberg SJ, Feringa BL. Chem Commun, 2016, 52: 6765-6768 CrossRef PubMed Google Scholar

[38] Zhao D, van Leeuwen T, Cheng J, Feringa BL. Nat Chem, 2017, 9: 250-256 CrossRef PubMed ADS Google Scholar

[39] Lewandowski B, De Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PME, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA. Science, 2013, 339: 189-193 CrossRef PubMed ADS Google Scholar

[40] De Bo G, Kuschel S, Leigh DA, Lewandowski B, Papmeyer M, Ward JW. J Am Chem Soc, 2014, 136: 5811-5814 CrossRef PubMed Google Scholar

[41] De Bo G, Gall MAY, Kitching MO, Kuschel S, Leigh DA, Tetlow DJ, Ward JW. J Am Chem Soc, 2017, 139: 10875-10879 CrossRef PubMed Google Scholar

[42] Wilson MR, Solà J, Carlone A, Goldup SM, Lebrasseur N, Leigh DA. Nature, 2016, 534: 235-240 CrossRef PubMed ADS Google Scholar

[43] Astumian RD. Nat Nanotech, 2016, 11: 582-583 CrossRef PubMed ADS Google Scholar

[44] Erbas-Cakmak S, Fielden SDP, Karaca U, Leigh DA, McTernan CT, Tetlow DJ, Wilson MR. Science, 2017, 358: 340-343 CrossRef PubMed ADS Google Scholar

[45] Cao ZQ, Miao Q, Zhang Q, Li H, Qu DH, Tian H. Chem Commun, 2015, 51: 4973-4976 CrossRef PubMed Google Scholar

[46] Strutt NL, Fairen-Jimenez D, Iehl J, Lalonde MB, Snurr RQ, Farha OK, Hupp JT, Stoddart JF. J Am Chem Soc, 2012, 134: 17436-17439 CrossRef PubMed Google Scholar

[47] Deng H, Olson MA, Stoddart JF, Yaghi OM. Nat Chem, 2010, 2: 439-443 CrossRef PubMed ADS Google Scholar

[48] Gong HY, Rambo BM, Cho W, Lynch VM, Oh M, Sessler JL. Chem Commun, 2011, 47: 5973-5975 CrossRef PubMed Google Scholar

[49] Coskun A, Hmadeh M, Barin G, Gándara F, Li Q, Choi E, Strutt NL, Cordes DB, Slawin AMZ, Stoddart JF, Sauvage JP, Yaghi OM. Angew Chem Int Ed, 2012, 51: 2160-2163 CrossRef PubMed Google Scholar

[50] McGonigal PR, Deria P, Hod I, Moghadam PZ, Avestro AJ, Horwitz NE, Gibbs-Hall IC, Blackburn AK, Chen D, Botros YY, Wasielewski MR, Snurr RQ, Hupp JT, Farha OK, Fraser Stoddart J. Proc Natl Acad Sci USA, 2015, 112: 11161-11168 CrossRef PubMed ADS Google Scholar

[51] Sue ACH, Mannige RV, Deng H, Cao D, Wang C, Gándara F, Stoddart JF, Whitelam S, Yaghi OM. Proc Natl Acad Sci USA, 2015, 112: 5591-5596 CrossRef PubMed ADS Google Scholar

[52] Vukotic VN, Harris KJ, Zhu K, Schurko RW, Loeb SJ. Nat Chem, 2012, 4: 456-460 CrossRef PubMed ADS Google Scholar

[53] Zhu K, O’Keefe CA, Vukotic VN, Schurko RW, Loeb SJ. Nat Chem, 2015, 7: 514-519 CrossRef PubMed ADS Google Scholar

[54] Chen Q, Sun J, Li P, Hod I, Moghadam PZ, Kean ZS, Snurr RQ, Hupp JT, Farha OK, Stoddart JF. J Am Chem Soc, 2016, 138: 14242-14245 CrossRef PubMed Google Scholar

[55] Li Q, Fuks G, Moulin E, Maaloum M, Rawiso M, Kulic I, Foy JT, Giuseppone N. Nat Nanotech, 2015, 10: 161-165 CrossRef PubMed ADS Google Scholar

[56] Foy JT, Li Q, Goujon A, Colard-Itté JR, Fuks G, Moulin E, Schiffmann O, Dattler D, Funeriu DP, Giuseppone N. Nat Nanotech, 2017, 12: 540-545 CrossRef PubMed ADS Google Scholar

[57] Iwaso K, Takashima Y, Harada A. Nat Chem, 2016, 8: 625-632 CrossRef PubMed ADS Google Scholar

[58] Goujon A, Lang T, Mariani G, Moulin E, Fuks G, Raya J, Buhler E, Giuseppone N. J Am Chem Soc, 2017, 139: 14825-14828 CrossRef PubMed Google Scholar

[59] Goujon A, Du G, Moulin E, Fuks G, Maaloum M, Buhler E, Giuseppone N. Angew Chem Int Ed, 2016, 55: 703-707 CrossRef PubMed Google Scholar

[60] Fu X, Gu RR, Zhang Q, Rao SJ, Zheng XL, Qu DH, Tian H. Polym Chem, 2016, 7: 2166-2170 CrossRef Google Scholar

[61] Goujon A, Mariani G, Lang T, Moulin E, Rawiso M, Buhler E, Giuseppone N. J Am Chem Soc, 2017, 139: 4923-4928 CrossRef PubMed Google Scholar

[62] Yu JJ, Cao ZQ, Zhang Q, Yang S, Qu DH, Tian H. Chem Commun, 2016, 52: 12056-12059 CrossRef PubMed Google Scholar

[63] Chen J, Leung FKC, Stuart MCA, Kajitani T, Fukushima T, van der Giessen E, Feringa BL. Nat Chem, 2018, 10: 132-138 CrossRef PubMed ADS Google Scholar

[64] García-López V, Chen F, Nilewski LG, Duret G, Aliyan A, Kolomeisky AB, Robinson JT, Wang G, Pal R, Tour JM. Nature, 2017, 548: 567-572 CrossRef PubMed ADS Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1