SCIENCE CHINA Chemistry, Volume 61, Issue 9: 1159-1166(2018) https://doi.org/10.1007/s11426-018-9268-y

Preparation of pH- and reductive-responsive prodrug nanoparticles via polymerization-induced self-assembly

More info
  • ReceivedMar 23, 2018
  • AcceptedApr 21, 2018
  • PublishedJul 31, 2018


pH- and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced self-assembly (PISA). First, reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate (DIPEMA) and camptothecin prodrug monomer (CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P(DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate (BzMA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell (PHPMA), the drug-conjugated middle layer (P(DIPEMA-co-CPTM)) and the PBzMA core, and relatively high concentration (250 mg/g). The prodrug nanoparticles can respond to two stimuli (reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin (CPT) within the prodrug nanoparticles could be effectively triggered. pH-Induced hydrophobic/hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.

Funded by

the National Key R&D Program of China(2017YFA0205601)

the National Natural Science Foundation of China(51625305,21704095,21774113,21525420)


This work was supported by the National Key R&D Program of China (2017YFA0205601) and the National Natural Science Foundation of China (51625305, 21704095, 21774113, 21525420).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Adv Drug Deliver Rev, 2017, 115: 98-114 CrossRef PubMed Google Scholar

[2] Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Drug Deliver, 2017, 24: 539-557 CrossRef PubMed Google Scholar

[3] Chen J, Ding J, Xiao C, Zhuang X, Chen X. Biomater Sci, 2015, 3: 988-1001 CrossRef PubMed Google Scholar

[4] Kaur S, Prasad C, Balakrishnan B, Banerjee R. Biomater Sci, 2015, 3: 955-987 CrossRef PubMed Google Scholar

[5] Zhuang Y, Wang D, Yin C, Deng H, Sun M, He L, Su Y, Zhu X. Sci China Chem, 2016, 59: 1600-1608 CrossRef Google Scholar

[6] Wang G, Song W, Shen N, Yu H, Deng M, Tang Z, Fu X, Chen X. Sci China Mater, 2017, 60: 995-1007 CrossRef Google Scholar

[7] Gao YJ, Qiao ZY, Wang H. Sci China Chem, 2016, 59: 991-1002 CrossRef Google Scholar

[8] Wang W, Ma X, Yu X. Chin J Polym Sci, 2017, 35: 1352-1362 CrossRef Google Scholar

[9] Liu Q, Hong CY, Pan CY. Acta Polym Sin, 2015, 15–24. Google Scholar

[10] Mao J, Li Y, Wu T, Yuan C, Zeng B, Xu Y, Dai L. ACS Appl Mater Interfaces, 2016, 8: 17109-17117 CrossRef Google Scholar

[11] Zhang WJ, Hong CY, Pan CY. ACS Appl Mater Interfaces, 2017, 9: 15086-15095 CrossRef Google Scholar

[12] Wang L, Zhang H, Qin A, Jin Q, Tang BZ, Ji J. Sci China Chem, 2016, 59: 1609-1615 CrossRef Google Scholar

[13] Wang LH, Hong CY. Acta Polym Sin, 2017, 2: 200–213. Google Scholar

[14] Jia H, Chen S, Zhuo R, Feng J, Zhang X. Sci China Chem, 2016, 59: 1397-1404 CrossRef Google Scholar

[15] Schafer FQ, Buettner GR. Free Radical Biol Med, 2001, 30: 1191-1212 CrossRef Google Scholar

[16] Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, Liu S. J Am Chem Soc, 2013, 135: 17617-17629 CrossRef PubMed Google Scholar

[17] Zhang WJ, Hong CY, Pan CY. Biomacromolecules, 2016, 17: 2992-2999 CrossRef PubMed Google Scholar

[18] He W, Hu X, Jiang W, Liu R, Zhang D, Zhang J, Li Z, Luan Y. Adv Healthc Mater, 2017, 6: 1700829 CrossRef PubMed Google Scholar

[19] Zhang F, Zhu G, Jacobson O, Liu Y, Chen K, Yu G, Ni Q, Fan J, Yang Z, Xu F, Fu X, Wang Z, Ma Y, Niu G, Zhao X, Chen X. ACS Nano, 2017, 11: 8838-8848 CrossRef Google Scholar

[20] Xu C, Wang XJ, Wang CH, Yan HS, Liu KL. Acta Polym Sin, 2015, 65–71. Google Scholar

[21] Wu Q, Niu M, Chen X, Tan L, Fu C, Ren X, Ren J, Li L, Xu K, Zhong H, Meng X. Biomaterials, 2018, 162: 132-143 CrossRef PubMed Google Scholar

[22] Hu X, Zhang Y, Xie Z, Jing X, Bellotti A, Gu Z. Biomacromolecules, 2017, 18: 649-673 CrossRef PubMed Google Scholar

[23] Fan W, Li M, Hong C, Pan C. Acta Chim Sin, 2015, 73: 330-336 CrossRef Google Scholar

[24] Wang LH, Zhang Z, Zeng TY, Xia L, Nie X, Chen G, You YZ. Acta Polym Sin, 2017, 12: 1883–1904. Google Scholar

[25] Zheng G, Pan C. Macromolecules, 2006, 39: 95-102 CrossRef ADS Google Scholar

[26] An Z, Shi Q, Tang W, Tsung CK, Hawker CJ, Stucky GD. J Am Chem Soc, 2007, 129: 14493-14499 CrossRef PubMed Google Scholar

[27] Chang J, Zhang W, Hong C. Chin J Chem, 2017, 35: 1016-1022 CrossRef Google Scholar

[28] Chen S, Shi P, Zhang W. Chin J Polym Sci, 2017, 35: 455-479 CrossRef Google Scholar

[29] Charleux B, Delaittre G, Rieger J, D’Agosto F. Macromolecules, 2012, 45: 6753-6765 CrossRef ADS Google Scholar

[30] Rieger J. Macromol Rapid Commun, 2015, 36: 1458-1471 CrossRef PubMed Google Scholar

[31] Derry MJ, Fielding LA, Armes SP. Prog Polym Sci, 2016, 52: 1-18 CrossRef Google Scholar

[32] Pei Y, Lowe AB, Roth PJ. Macromol Rapid Commun, 2017, 38: 1600528 CrossRef PubMed Google Scholar

[33] Yeow J, Boyer C. Adv Sci, 2017, 4: 1700137 CrossRef PubMed Google Scholar

[34] Zhang WJ, Hong CY, Pan CY. J Mater Chem A, 2014, 2: 7819-7828 CrossRef Google Scholar

[35] Wang X, Figg CA, Lv X, Yang Y, Sumerlin BS, An Z. ACS Macro Lett, 2017, 6: 337-342 CrossRef Google Scholar

[36] Zhang Q, Zhu S. ACS Macro Lett, 2015, 4: 755-758 CrossRef Google Scholar

[37] Chen X, Liu L, Huo M, Zeng M, Peng L, Feng A, Wang X, Yuan J. Angew Chem Int Ed, 2017, 56: 16541-16545 CrossRef PubMed Google Scholar

[38] Ding Y, Cai M, Cui Z, Huang L, Wang L, Lu X, Cai Y. Angew Chem Int Ed, 2018, 57: 1053-1056 CrossRef PubMed Google Scholar

[39] Tan J, Huang C, Liu D, Li X, He J, Xu Q, Zhang L. ACS Macro Lett, 2017, 6: 298-303 CrossRef Google Scholar

[40] Zhang XY, Liu DM, Lv XH, Sun M, Sun XL, Wan WM. Macromol Rapid Commun, 2016, 37: 1735-1741 CrossRef PubMed Google Scholar

[41] Qiao XG, Lambert O, Taveau JC, Dugas PY, Charleux B, Lansalot M, Bourgeat-Lami E. Macromolecules, 2017, 50: 3796-3806 CrossRef ADS Google Scholar

[42] Zhang WJ, Hong CY, Pan CY. Macromolecules, 2014, 47: 1664-1671 CrossRef ADS Google Scholar

[43] Wright DB, Touve MA, Adamiak L, Gianneschi NC. ACS Macro Lett, 2017, 6: 925-929 CrossRef Google Scholar

[44] Zhang WJ, Hong CY, Pan CY. Biomacromolecules, 2017, 18: 1210-1217 CrossRef PubMed Google Scholar

[45] Qiu L, Xu CR, Zhong F, Hong CY, Pan CY. ACS Appl Mater Interfaces, 2016, 8: 18347-18359 CrossRef Google Scholar

[46] Scales CW, Vasilieva YA, Convertine AJ, Lowe AB, McCormick CL. Biomacromolecules, 2005, 6: 1846-1850 CrossRef PubMed Google Scholar

[47] Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Macromolecules, 2001, 34: 2248-2256 CrossRef ADS Google Scholar

[48] Zhang W, Fan W, Li M, Hong C, Pan C. Acta Chim Sin, 2012, 70: 1690-1696 CrossRef Google Scholar

[49] Li JY, Qiu L, Xu XF, Pan CY, Hong CY, Zhang WJ. J Mater Chem B, 2018, 6: 1678-1687 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有