logo

SCIENCE CHINA Chemistry, Volume 61, Issue 7: 765-786(2018) https://doi.org/10.1007/s11426-018-9270-y

2D graphdiyne materials: challenges and opportunities in energy field

More info
  • ReceivedMar 26, 2018
  • AcceptedApr 23, 2018
  • PublishedMay 31, 2018

Abstract

Graphdiyne (GDY), a novel two-dimensional (2D) carbon allotrope featuring one-atom-thick planar layers of sp and sp2 co-hybridized carbon network, is a rapidly rising star on the horizon of materials science. Because of its unparalleled structural, electronic, chemical and physical properties, it has been receiving unprecedented increases from fundamental studies to practical applications, particularly the field of energetic materials. In this review, we aim at providing an up-to-date comprehensive overview on the state-of-the-art research into GDY, from theoretical studies to the key achievements in the development of new GDY-based energetic materials for energy storage and conversion. By reviewing the state-of-the-art achievements, we aim to address the benefits and issues of GDY-based materials, as well as highlighting the existing key challenges and future opportunities in this exciting field.


Funded by

the National Natural Science Foundation of China(21790050,21790051)

the National Key Research and Development Project of China(2016YFA0200104)

the Key Program of the Chinese Academy of Sciences(QYZDY-SSW-SLH015)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21790050, 21790051), the National Key Research and Development Project of China (2016YFA0200104) and the Key Program of the Chinese Academy of Sciences (QYZDY-SSW-SLH015).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Heimann RB, Evsvukov SE, Koga Y. Carbon, 1997, 35: 1654-1658 CrossRef Google Scholar

[2] Li Y, Xu L, Liu H, Li Y. Chem Soc Rev, 2014, 43: 2572-2586 CrossRef PubMed Google Scholar

[3] Georgakilas V, Perman JA, Tucek J, Zboril R. Chem Rev, 2015, 115: 4744-4822 CrossRef PubMed Google Scholar

[4] Li Y. Sci Sin Chim, 2017, 47: 1045-1056 CrossRef Google Scholar

[5] Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y. Acc Chem Res, 2017, 50: 2470-2478 CrossRef PubMed Google Scholar

[6] Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. Nature, 1985, 318: 162-163 CrossRef ADS Google Scholar

[7] Iijima S. Nature, 1991, 354: 56-58 CrossRef ADS Google Scholar

[8] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[9] Baughman RH, Eckhardt H, Kertesz M. J Chem Phys, 1987, 87: 6687-6699 CrossRef ADS Google Scholar

[10] Boehm HP, Setton R, Stumpp E. Carbon, 1986, 24: 241-245 CrossRef Google Scholar

[11] Narita N, Nagai S, Suzuki S, Nakao K. Phys Rev B, 1998, 58: 11009-11014 CrossRef ADS Google Scholar

[12] Haley MM, Brand SC, Pak JJ. Angew Chem Int Ed Engl, 1997, 36: 836-838 CrossRef Google Scholar

[13] Diederich F. Nature, 1994, 369: 199-207 CrossRef ADS Google Scholar

[14] Bunz UHF, Rubin Y, Tobe Y. Chem Soc Rev, 1999, 28: 107-119 CrossRef Google Scholar

[15] Wan WB, Brand SC, Pak JJ, Haley MM. Chem-Eur J, 2000, 6: 2044–2052. Google Scholar

[16] Huang CS, Li YL. Acta Phys-Chim Sin, 2016, 32: 1314–1329. Google Scholar

[17] Wan WB, Haley MM. J Org Chem, 2001, 66: 3893-3901 CrossRef Google Scholar

[18] Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem Commun, 2010, 46: 3256-3258 CrossRef PubMed Google Scholar

[19] Long M, Tang L, Wang D, Li Y, Shuai Z. ACS Nano, 2011, 5: 2593-2600 CrossRef PubMed Google Scholar

[20] He J, Ma SY, Zhou P, Zhang CX, He C, Sun LZ. J Phys Chem C, 2012, 116: 26313-26321 CrossRef Google Scholar

[21] Cranford SW, Brommer DB, Buehler MJ. Nanoscale, 2012, 4: 7797-7809 CrossRef PubMed ADS Google Scholar

[22] Puigdollers AR, Alonso G, Gamallo P. Carbon, 2016, 96: 879-887 CrossRef Google Scholar

[23] Ma SY, Zhang M, Sun LZ, Zhang KW. Carbon, 2016, 99: 547-555 CrossRef Google Scholar

[24] Chopra S. RSC Adv, 2016, 6: 89934-89939 CrossRef Google Scholar

[25] Inagaki M, Kang FY. J Phys Chem A, 2014, 2: 13193–13206. Google Scholar

[26] Zheng JJ, Zhao X, Zhao Y, Gao X. Sci Rep, 2013, 3: 1271 CrossRef PubMed ADS Google Scholar

[27] Tahara K, Yamamoto Y, Gross DE, Kozuma H, Arikuma Y, Ohta K, Koizumi Y, Gao Y, Shimizu Y, Seki S, Kamada K, Moore JS, Tobe Y. Chem Eur J, 2013, 19: 11251-11260 CrossRef PubMed Google Scholar

[28] Ivanovskii AL. Prog Solid State Chem, 2013, 41: 1-19 CrossRef Google Scholar

[29] Chandra Shekar S, Swathi RS. J Phys Chem A, 2013, 117: 8632-8641 CrossRef PubMed ADS Google Scholar

[30] Yue Q, Chang S, Tan J, Qin S, Kang J, Li J. Phys Rev B, 2012, 86: 235448 CrossRef ADS Google Scholar

[31] Srinivasu K, Ghosh SK. J Phys Chem C, 2012, 116: 5951-5956 CrossRef Google Scholar

[32] Pan LD, Zhang LZ, Song BQ, Du SX, Gao HJ. Appl Phys Lett, 2011, 98: 173102 CrossRef ADS arXiv Google Scholar

[33] Coluci VR, Braga SF, Legoas SB, Galvão DS, Baughman RH. Phys Rev B, 2003, 68: 035430 CrossRef ADS Google Scholar

[34] Cranford SW, Buehler MJ. Carbon, 2011, 49: 4111-4121 CrossRef Google Scholar

[35] Bai H, Zhu Y, Qiao W, Huang Y. RSC Adv, 2011, 1: 768-775 CrossRef Google Scholar

[36] Tang Y, Yang H, Yang P. Carbon, 2017, 117: 246-251 CrossRef Google Scholar

[37] Hou J, Yin Z, Zhang Y, Chang T. J Appl Mech, 2015, 82: 094501 CrossRef ADS Google Scholar

[38] Yang Y, Xu X. Comput Mater Sci, 2012, 61: 83-88 CrossRef Google Scholar

[39] Yue Q, Chang S, Kang J, Qin S, Li J. J Phys Chem C, 2013, 117: 14804-14811 CrossRef Google Scholar

[40] Kang J, Li J, Wu F, Li SS, Xia JB. J Phys Chem C, 2011, 115: 20466-20470 CrossRef Google Scholar

[41] Kresse G, Hafner J. Phys Rev B, 1993, 47: 558-561 CrossRef ADS Google Scholar

[42] Zhang YY, Pei QX, Wang CM. Appl Phys Lett, 2012, 101: 081909 CrossRef ADS Google Scholar

[43] Luo G, Qian X, Liu H, Qin R, Zhou J, Li L, Gao Z, Wang E, Mei WN, Lu J, Li Y, Nagase S. Phys Rev B, 2011, 84: 075439 CrossRef ADS Google Scholar

[44] Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC. Chem Commun, 2011, 47: 11843-11845 CrossRef PubMed Google Scholar

[45] Pei Y. Physica B-Condensed Matter, 2012, 407: 4436-4439 CrossRef ADS Google Scholar

[46] Sun L, Jiang PH, Liu HJ, Fan DD, Liang JH, Wei J, Cheng L, Zhang J, Shi J. Carbon, 2015, 90: 255-259 CrossRef Google Scholar

[47] Cui HJ, Sheng XL, Yan QB, Zheng QR, Su G. Phys Chem Chem Phys, 2013, 15: 8179-8185 CrossRef PubMed ADS arXiv Google Scholar

[48] Zheng Q, Luo G, Liu Q, Quhe R, Zheng J, Tang K, Gao Z, Nagase S, Lu J. Nanoscale, 2012, 4: 3990-3996 CrossRef PubMed ADS Google Scholar

[49] Luo G, Zheng Q, Mei WN, Lu J, Nagase S. J Phys Chem C, 2013, 117: 13072-13079 CrossRef Google Scholar

[50] Leenaerts O, Partoens B, Peeters FM. Appl Phys Lett, 2013, 103: 013105 CrossRef ADS Google Scholar

[51] Wang XM, Lu SS. J Phys Chem C, 2013, 117: 19740-19745 CrossRef Google Scholar

[52] Bhattacharya B, Singh NB, Mondal R, Sarkar U. Phys Chem Chem Phys, 2015, 17: 19325-19341 CrossRef PubMed ADS Google Scholar

[53] Shohany BG, Roknabadi MR, Kompany A. Physica E, 2016, 84: 146-151 CrossRef ADS Google Scholar

[54] Zhu Y, Bai H, Huang Y. Chemistryopen, 2016, 5: 78-87 CrossRef PubMed Google Scholar

[55] Cirera B, Zhang YQ, Björk J, Klyatskaya S, Chen Z, Ruben M, Barth JV, Klappenberger F. Nano Lett, 2014, 14: 1891-1897 CrossRef PubMed ADS Google Scholar

[56] Owens FJ. Solid State Commun, 2017, 250: 75-78 CrossRef ADS Google Scholar

[57] Li C, Li J, Wu F, Li SS, Xia JB, Wang LW. J Phys Chem C, 2011, 115: 23221-23225 CrossRef Google Scholar

[58] Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z. J Phys Chem A, 2012, 116: 3934-3939 CrossRef PubMed ADS Google Scholar

[59] Mohajeri A, Shahsavar A. J Mater Sci, 2017, 52: 5366-5379 CrossRef ADS Google Scholar

[60] Li G, Li Y, Qian X, Liu H, Lin H, Chen N, Li Y. J Phys Chem C, 2011, 115: 2611-2615 CrossRef Google Scholar

[61] Qian X, Ning Z, Li Y, Liu H, Ouyang C, Chen Q, Li Y. Dalton Trans, 2012, 41: 730-733 CrossRef PubMed Google Scholar

[62] Xue Y, Guo Y, Yi Y, Li Y, Liu H, Li D, Yang W, Li Y. Nano Energy, 2016, 30: 858-866 CrossRef Google Scholar

[63] Wang SS, Liu HB, Kan XN, Wang L, Chen YH, Su B, Li YL, Jiang L. Small, 2017, 13: 1602265 CrossRef PubMed Google Scholar

[64] Youngs WJ, Tessier CA, Bradshaw JD. Chem Rev, 1999, 99: 3153-3180 CrossRef Google Scholar

[65] Spitler EL, Johnson CA, Haley MM. Chem Rev, 2006, 106: 5344-5386 CrossRef PubMed Google Scholar

[66] Gholami M, Tykwinski RR. Chem Rev, 2006, 106: 4997-5027 CrossRef PubMed Google Scholar

[67] Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J Am Chem Soc, 2017, 139: 3145-3152 CrossRef PubMed Google Scholar

[68] Zhong J, Wang J, Zhou JG, Mao BH, Liu CH, Liu HB, Li YL, Sham TK, Sun XH, Wang SD. J Phys Chem C, 2013, 117: 5931-5936 CrossRef Google Scholar

[69] Iijima S, Ichihashi T. Nature, 1993, 363: 603-605 CrossRef ADS Google Scholar

[70] Ajayan PM. Chem Rev, 1999, 99: 1787-1800 CrossRef Google Scholar

[71] Pari S, Cuéllar A, Wong BM. J Phys Chem C, 2016, 120: 18871-18877 CrossRef Google Scholar

[72] Burghard M, Klauk H, Kern K. Adv Mater, 2009, 21: 2586-2600 CrossRef Google Scholar

[73] Zhou X, Boey F, Zhang H. Chem Soc Rev, 2011, 40: 5221-5231 CrossRef PubMed Google Scholar

[74] Park S, Pitner G, Giri G, Koo JH, Park J, Kim K, Wang H, Sinclair R, Wong HSP, Bao Z. Adv Mater, 2015, 27: 2656-2662 CrossRef PubMed Google Scholar

[75] Zhou J, Gao X, Liu R, Xie Z, Yang J, Zhang S, Zhang G, Liu H, Li Y, Zhang J, Liu Z. J Am Chem Soc, 2015, 137: 7596-7599 CrossRef PubMed Google Scholar

[76] Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L. J Am Chem Soc, 2015, 137: 5260-5263 CrossRef PubMed Google Scholar

[77] Guo S, Yan H, Wu F, Zhao L, Yu P, Liu H, Li Y, Mao L. Anal Chem, 2017, 89: 13008-13015 CrossRef PubMed Google Scholar

[78] Zhuang X, Mao L, Li Y. Electrochem Commun, 2017, 83: 96-101 CrossRef Google Scholar

[79] Wang C, Yu P, Guo S, Mao L, Liu H, Li Y. Chem Commun, 2016, 52: 5629-5632 CrossRef PubMed Google Scholar

[80] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760-764 CrossRef PubMed ADS Google Scholar

[81] Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Nat Commun, 2014, 5: 4973 CrossRef PubMed ADS Google Scholar

[82] Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361-365 CrossRef PubMed ADS Google Scholar

[83] Liu X, Dai L. Nat Rev Mater, 2016, 1: 16064 CrossRef ADS Google Scholar

[84] Liu Y, Shen Y, Sun L, Li J, Liu C, Ren W, Li F, Gao L, Chen J, Liu F, Sun Y, Tang N, Cheng HM, Du Y. Nat Commun, 2016, 7: 10921 CrossRef PubMed ADS Google Scholar

[85] Wang  S, Iyyamperumal  E, Roy A, Xue Y, Yu D, Dai L. Angew Chem Int Ed, 2011, 50: 11756-11760 CrossRef PubMed Google Scholar

[86] Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Angew Chem Int Ed, 2011, 50: 7132-7135 CrossRef PubMed Google Scholar

[87] Zhang Y, Mori T, Ye J, Antonietti M. J Am Chem Soc, 2010, 132: 6294-6295 CrossRef PubMed Google Scholar

[88] Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X’, Huang S. ACS Nano, 2012, 6: 205-211 CrossRef PubMed Google Scholar

[89] Sun X, Zhang Y, Song P, Pan J, Zhuang L, Xu W, Xing W. ACS Catal, 2013, 3: 1726-1729 CrossRef Google Scholar

[90] Wu P, Du P, Zhang H, Cai C. J Phys Chem C, 2012, 116: 20472-20479 CrossRef Google Scholar

[91] Liu R, Liu H, Li Y, Yi Y, Shang X, Zhang S, Yu X, Zhang S, Cao H, Zhang G. Nanoscale, 2014, 6: 11336-11343 CrossRef PubMed ADS Google Scholar

[92] Zhang S, Cai Y, He H, Zhang Y, Liu R, Cao H, Wang M, Liu J, Zhang G, Li Y, Liu H, Li B. J Mater Chem A, 2016, 4: 4738-4744 CrossRef Google Scholar

[93] Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS. Chem Rev, 2010, 110: 6446-6473 CrossRef PubMed Google Scholar

[94] Chen X, Shen S, Guo L, Mao SS. Chem Rev, 2010, 110: 6503-6570 CrossRef PubMed Google Scholar

[95] Pham TA, Ping Y, Galli G. Nat Mater, 2017, 16: 401-408 CrossRef PubMed ADS Google Scholar

[96] Turner JA. Science, 2004, 305: 972-974 CrossRef PubMed ADS Google Scholar

[97] Lubitz W, Ogata H, Rüdiger O, Reijerse E. Chem Rev, 2014, 114: 4081-4148 CrossRef PubMed Google Scholar

[98] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat Mater, 2010, 9: 353-358 CrossRef PubMed ADS Google Scholar

[99] Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Nat Nanotech, 2016, 11: 218-230 CrossRef PubMed ADS Google Scholar

[100] Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Nørskov JK, Zheng X. Nat Mater, 2016, 15: 48-53 CrossRef PubMed ADS Google Scholar

[101] Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Science, 2007, 317: 100-102 CrossRef PubMed ADS Google Scholar

[102] Chen Y, Yu G, Chen W, Liu Y, Li GD, Zhu P, Tao Q, Li Q, Liu J, Shen X, Li H, Huang X, Wang D, Asefa T, Zou X. J Am Chem Soc, 2017, 139: 12370-12373 CrossRef PubMed Google Scholar

[103] Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Nat Mater, 2012, 11: 963-969 CrossRef PubMed ADS Google Scholar

[104] Kibsgaard J, Jaramillo TF, Besenbacher F. Nat Chem, 2014, 6: 248-253 CrossRef PubMed ADS Google Scholar

[105] Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H, Watanabe F, Cui J, Chen TP. Nat Commun, 2016, 7: 10672 CrossRef PubMed ADS Google Scholar

[106] Yin Y, Han J, Zhang Y, Zhang X, Xu P, Yuan Q, Samad L, Wang X, Wang Y, Zhang Z, Zhang P, Cao X, Song B, Jin S. J Am Chem Soc, 2016, 138: 7965-7972 CrossRef PubMed Google Scholar

[107] Lv Q, Si W, Yang Z, Wang N, Tu Z, Yi Y, Huang C, Jiang L, Zhang M, He J, Long Y. ACS Appl Mater Interfaces, 2017, 9: 29744-29752 CrossRef Google Scholar

[108] Li Y, Guo C, Li J, Liao W, Li Z, Zhang J, Chen C. Carbon, 2017, 119: 201-210 CrossRef Google Scholar

[109] McCrory CCL, Jung S, Peters JC, Jaramillo TF. J Am Chem Soc, 2013, 135: 16977-16987 CrossRef PubMed Google Scholar

[110] McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. J Am Chem Soc, 2015, 137: 4347-4357 CrossRef PubMed Google Scholar

[111] Cabán-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang HC, Tsai ML, He JH, Jin S. Nat Mater, 2015, 14: 1245-1251 CrossRef PubMed ADS Google Scholar

[112] Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp ID, Kudo A, Yamada T, Domen K. Nat Mater, 2016, 15: 611-615 CrossRef PubMed ADS Google Scholar

[113] Xue Y, Li J, Xue Z, Li Y, Liu H, Li D, Yang W, Li Y. ACS Appl Mater Interfaces, 2016, 8: 31083-31091 CrossRef Google Scholar

[114] Xue Y, Zuo Z, Li Y, Liu H, Li Y. Small, 2017, 13: 1700936 CrossRef PubMed Google Scholar

[115] Li J, Gao X, Jiang X, Li XB, Liu Z, Zhang J, Tung CH, Wu LZ. ACS Catal, 2017, 7: 5209-5213 CrossRef Google Scholar

[116] Gray HB. Nat Chem, 2009, 1: 7-7 CrossRef PubMed ADS Google Scholar

[117] Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A. Chem Soc Rev, 2014, 43: 7501-7519 CrossRef PubMed Google Scholar

[118] Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Chem Soc Rev, 2014, 43: 7787-7812 CrossRef PubMed Google Scholar

[119] Wu LZ, Chen B, Li ZJ, Tung CH. Acc Chem Res, 2014, 47: 2177-2185 CrossRef PubMed Google Scholar

[120] Li F, Fan K, Xu B, Gabrielsson E, Daniel Q, Li L, Sun L. J Am Chem Soc, 2015, 137: 9153-9159 CrossRef PubMed Google Scholar

[121] Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E. Nat Mater, 2011, 10: 456-461 CrossRef PubMed ADS Google Scholar

[122] Ding Q, Zhai J, Cabán-Acevedo M, Shearer MJ, Li L, Chang HC, Tsai ML, Ma D, Zhang X, Hamers RJ, He JH, Jin S. Adv Mater, 2015, 27: 6511-6518 CrossRef PubMed Google Scholar

[123] Li J, Gao X, Liu B, Feng Q, Li XB, Huang MY, Liu Z, Zhang J, Tung CH, Wu LZ. J Am Chem Soc, 2016, 138: 3954-3957 CrossRef PubMed Google Scholar

[124] Gao X, Li J, Du R, Zhou J, Huang MY, Liu R, Li J, Xie Z, Wu LZ, Liu Z, Zhang J. Adv Mater, 2017, 29: 1605308 CrossRef PubMed Google Scholar

[125] Thangavel S, Krishnamoorthy K, Krishnaswamy V, Raju N, Kim SJ, Venugopal G. J Phys Chem C, 2015, 119: 22057-22065 CrossRef Google Scholar

[126] Wang S, Yi L, Halpert JE, Lai X, Liu Y, Cao H, Yu R, Wang D, Li Y. Small, 2012, 8: 265-271 CrossRef PubMed Google Scholar

[127] Yang N, Liu Y, Wen H, Tang Z, Zhao H, Li Y, Wang D. ACS Nano, 2013, 7: 1504-1512 CrossRef PubMed Google Scholar

[128] Jin Z, Zhou Q, Chen Y, Mao P, Li H, Liu H, Wang J, Li Y. Adv Mater, 2016, 28: 3697-3702 CrossRef PubMed Google Scholar

[129] Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD. Adv Funct Mater, 2012, 22: 4592-4597 CrossRef Google Scholar

[130] Chen Z, Qin Y, Weng D, Xiao Q, Peng Y, Wang X, Li H, Wei F, Lu Y. Adv Funct Mater, 2009, 19: 3420-3426 CrossRef Google Scholar

[131] Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ. Adv Mater, 2011, 23: 2076-2081 CrossRef PubMed Google Scholar

[132] Krishnamoorthy K, Thangavel S, Chelora Veetil J, Raju N, Venugopal G, Kim SJ. Int J Hydrogen Energy, 2016, 41: 1672-1678 CrossRef Google Scholar

[133] Chen CM, Zhang Q, Yang MG, Huang CH, Yang YG, Wang MZ. Carbon, 2012, 50: 3572-3584 CrossRef Google Scholar

[134] Ramachandran R, Saranya M, Velmurugan V, Raghupathy BPC, Jeong SK, Grace AN. Appl Energy, 2015, 153: 22-31 CrossRef Google Scholar

[135] Shang H, Zuo Z, Zheng H, Li K, Tu Z, Yi Y, Liu H, Li Y, Li Y. Nano Energy, 2018, 44: 144-154 CrossRef Google Scholar

[136] Wang K, Wang N, He J, Yang Z, Shen X, Huang C. Electrochim Acta, 2017, 253: 506-516 CrossRef Google Scholar

[137] Park MS, Lim YG, Kim JH, Kim YJ, Cho J, Kim JS. Adv Energy Mater, 2011, 1: 1002-1006 CrossRef Google Scholar

[138] Wang H, Zhang Y, Ang H, Zhang Y, Tan HT, Zhang Y, Guo Y, Franklin JB, Wu XL, Srinivasan M, Fan HJ, Yan Q. Adv Funct Mater, 2016, 26: 3082-3093 CrossRef Google Scholar

[139] Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D. Energy Environ Sci, 2015, 8: 941-955 CrossRef Google Scholar

[140] Lee JH, Shin WH, Ryou MH, Jin JK, Kim J, Choi JW. ChemSusChem, 2012, 5: 2328-2333 CrossRef PubMed Google Scholar

[141] Zhang H, Xia Y, Bu H, Wang X, Zhang M, Luo Y, Zhao M. J Appl Phys, 2013, 113: 044309 CrossRef ADS Google Scholar

[142] Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H. Appl Phys Lett, 2013, 103: 263904 CrossRef ADS Google Scholar

[143] Du H, Yang H, Huang C, He J, Liu H, Li Y. Nano Energy, 2016, 22: 615-622 CrossRef Google Scholar

[144] Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y. ACS Nano, 2017, 11: 5140-5147 CrossRef Google Scholar

[145] Zheng Y, Zhou T, Zhao X, Pang WK, Gao H, Li S, Zhou Z, Liu H, Guo Z. Adv Mater, 2017, 29: 1700396 CrossRef PubMed Google Scholar

[146] Huang C, Zhang S, Liu H, Li Y, Cui G, Li Y. Nano Energy, 2015, 11: 481-489 CrossRef Google Scholar

[147] Shang H, Zuo Z, Li L, Wang F, Liu H, Li Y, Li Y. Angew Chem Int Ed, 2018, 57: 774-778 CrossRef PubMed Google Scholar

[148] Zhang S, Liu H, Huang C, Cui G, Li Y. Chem Commun, 2015, 51: 1834-1837 CrossRef PubMed Google Scholar

[149] Zhang S, Du H, He J, Huang C, Liu H, Cui G, Li Y. ACS Appl Mater Interfaces, 2016, 8: 8467-8473 CrossRef Google Scholar

[150] He J, Wang N, Cui Z, Du H, Fu L, Huang C, Yang Z, Shen X, Yi Y, Tu Z, Li Y. Nat Commun, 2017, 8: 1172 CrossRef PubMed Google Scholar

[151] Wang N, He J, Tu Z, Yang Z, Zhao F, Li X, Huang C, Wang K, Jiu T, Yi Y, Li Y. Angew Chem Int Ed, 2017, 56: 10740-10745 CrossRef PubMed Google Scholar

[152] Kundu D, Talaie E, Duffort V, Nazar LF. Angew Chem Int Ed, 2015, 54: 3431-3448 CrossRef PubMed Google Scholar

[153] Pan H, Hu YS, Chen L. Energy Environ Sci, 2013, 6: 2338 CrossRef Google Scholar

[154] Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. Chem Commun, 2012, 48: 7070-7072 CrossRef PubMed Google Scholar

[155] Farokh Niaei AH, Hussain T, Hankel M, Searles DJ. J Power Sources, 2017, 343: 354-363 CrossRef ADS Google Scholar

[156] Zhang S, He J, Zheng J, Huang C, Lv Q, Wang K, Wang N, Lan Z. J Mater Chem A, 2017, 5: 2045-2051 CrossRef Google Scholar

[157] Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395-398 CrossRef PubMed ADS Google Scholar

[158] Eperon GE, Burlakov VM, Docampo P, Goriely A, Snaith HJ. Adv Funct Mater, 2014, 24: 151-157 CrossRef Google Scholar

[159] Cao J, Liu YM, Jing X, Yin J, Li J, Xu B, Tan YZ, Zheng N. J Am Chem Soc, 2015, 137: 10914-10917 CrossRef PubMed Google Scholar

[160] Du H, Deng Z, Lü Z, Yin Y, Yu LL, Wu H, Chen Z, Zou Y, Wang Y, Liu H, Li Y. Synth Met, 2011, 161: 2055-2057 CrossRef Google Scholar

[161] Xiao J, Shi J, Liu H, Xu Y, Lv S, Luo Y, Li D, Meng Q, Li Y. Adv Energy Mater, 2015, 5: 1401943 CrossRef Google Scholar

[162] Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J, Li Y. Nano Lett, 2015, 15: 2756-2762 CrossRef PubMed ADS Google Scholar

[163] Ren H, Shao H, Zhang L, Guo D, Jin Q, Yu R, Wang L, Li Y, Wang Y, Zhao H, Wang D. Adv Energy Mater, 2015, 5: 1500296 CrossRef Google Scholar

[164] Emin S, Singh SP, Han L, Satoh N, Islam A. Sol Energy, 2011, 85: 1264-1282 CrossRef ADS Google Scholar

[165] Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH. Chem Rev, 2015, 115: 12732-12763 CrossRef PubMed Google Scholar

[166] Jin Z, Yuan M, Li H, Yang H, Zhou Q, Liu H, Lan X, Liu M, Wang J, Sargent EH, Li Y. Adv Funct Mater, 2016, 26: 5284-5289 CrossRef Google Scholar

[167] Chen Y, Liu H, Li Y. Chin Sci Bull, 2016, 61: 2901–2912. Google Scholar

[168] Li YJ, Li YL. Acta Phys-Chim Sin, 2018, 34: 992–1013. Google Scholar

[169] Zhou JY, Zhang J, Liu ZF. Acta Phys-Chim Sin, 2018, 34: 977–991. Google Scholar

[170] Zhao YS, Zhang LJ, Qi J, Jin Q, Lin KF, Wang D. Acta Phys-Chim Sin, 2018, 34: 1048–1060. Google Scholar

[171] Xu R, Xu Y. Modern Inorganic Synthetic Chemistry, 2nd ed. Amsterdam: Elsevier, 2017. Google Scholar

  • Figure 1

    A phase diagram showing materials consisting of carbon in a single hybridization state at the vertices, materials containing mixtures of two hybridization states along the edges, and materials with all three hybridization states within the triangle (color online).

  • Figure 2

    (a) Schematic of graphene to graphyne-linking aromatic groups by linear acetylene. Constructed full atomistic molecular models for grapheme (b), GY (c), GDY (d), GY-3 (e), and GY-4 (f) [21] (color online).

  • Figure 3

    (a) Structure of the interface between monolayer GDY and Cu(111) surface. (a) Top view and side view of the unit supercell, d is the interface distance. (b) Top views of top, hcp and fcc configurations, respectively. (c) is the relationship between binding energies and interface distance for different stacking configurations. The dashed line is the L-J fitting curve based on the fcc curve. (d) The change of bonding strength and gradient of charge density difference (CDD) during the interface peeling process. The curve in red is the difference between DFT-derived and fitted empirical curves. (e) The projected spin densities of states (PDOSs) of specific C and Cu atoms at different interface distances. (i) and (iii) are PDOSs for the sp2 C atom and the Cu atom below at interface distances of 3.2 and 1.91 Å respectively; (ii) and (iv) are PDOSs for the sp C atom and the Cu atom below at interface distances of 3.2 and 1.91 Å respectively. (f) PDOSs of graphdiyne and surface copper atoms at different interface distances. (i) is the PDOS of separated graphdiyne and surface copper atoms, (ii), (iii) and (iv) are PDOSs of the two components at interface distances of 3.2, 2.3 and 1.91 Å, respectively [36] (color online).

  • Figure 4

    (a) In-plane stiffness, (b) shear stiffness, and (c) Poisson’s ratio of graphyne-n as functions of the number of acetylenic linkages. (d) Dependence of the normalized in-plane stiffness, real bond density, and effective bond density on the number of acetylenic linkages [37] (color online).

  • Figure 5

    Optimized configurations of (a, b) bilayer and (c–e) trilayer GDY from top view. Band gap (by the left scale) and effective mass of carriers (me and mh, by the right scale) of AB(β1) (f) and AB(β2) (g) configuration of bilayer graphdiyne as a function of perpendicular electrical field strength. Filled squares and circles indicate the calculated m*e and m*h. (h) Band gaps of ABA(γ1), ABC(γ2), and ABC(γ3) trilayer configurations versus perpendicular electrical field strength [48] (color online).

  • Figure 6

    Synthesis and microscopic observations of multilayer GDY. (a) Schematic representation of the synthesis of GDY on Cu foil with hexaethynylbenzene as precursor. SEM images of large-area GDY films grown on the surface of copper foil (b, c), cracked film on the brim of copper foil (d), a turned up film (e). (f) AFM image of GDY film. (g) Tapping-mode 3D height AFM image. Schematic illustration (h) and a photograph (i) of the liquid/liquid interfacial synthetic procedure. (j) Optical microscope image on an HMDS/Si(100) substrate. (k) Atomic force microscope image on HMDS/Si(100) and cross-sectional analysis along the blue line. TEM image (l) and SAED pattern (m) on a holey elastic carbon matrix. Numerical values in panel f denote Miller indices. (n) GDY lattice of the ABC-stacking configuration (top view) determined by TEM/SAED. (o) High-resolution TEM micrograph (color online).

  • Figure 7

    The grooved template provided numerous regularly confined spacing at the microscale for the in situ synthesis of GDY, whereas the superlyophilicity of grooved templates is the key to allow a continuous mass transport of raw reactants and yield precisely patterned GDY stripes. (a) When a lyophilic template has been used to guide the growth of graphdiyne, air pockets usually existed in the middle part of the linear confined spacing, yielding just several graphdiyne dots in the two ends of the pillar gap regions. (b) When using a superlyophilic template, the hexaethynylbenzene-loading pyridine liquid can completely wet and pass through the linear confined spacing, allowing the generation of precisely patterned graphdiyne stripes. The contact angles of pyridine (γ=39.82 mN/m) droplet on the lyophilic (c) and superlyophilic (e) grooved templates. (d, f) The corresponding scanning electron microscopic (SEM) images of graphdiyne growth upon the copper foils. The dark areas are graphdiyne while the gray regions are copper foils. The scale bar is 500 μm. Adapted from Ref. [63] (color online).

  • Figure 8

    (a) Catalytic performance of N-doped GDY. From left to right: scheme of N-doped GDY; typical CV curves (scan rate 10 mV/s) of GDY and N-doped GDY on a GC RDE in an O2-saturated 0.1 M KOH solution; CV curves of N 550-GDY and Pt/C in Ar-saturated (black), O2-saturated (red), 3 M methanol and O2-saturated 0.1 M KOH (blue) solution. Adapted from Ref. [91]. (b) From left to right: LSV curves of GDY, NSGDY, NBGDY and NFGDY obtained from RDE measurements at 1600 rpm at a scan rate of 10 mV/s in O2-saturated 0.1 M KOH; LSV curves of NFGDY obtained from RDE measurements at different rotating rates from 400 to 1600 rpm; K–L plots of NFGDY calculated at different potentials on the basis of the RDE data; HO2-yields and electron transfer number of NFGD and 20% Pt/C at various disk electrode potentials obtained from the rotating ring-disk electrode tests (color online).

  • Figure 9

    (a) Schematic representation of the CoNC/GDY catalysts. (b) TEM and (c) STEM image and EDX elemental mapping of C, Co, and N for the CoNC/GDY catalyst. HER polarization curves of CoNC/GDY in (d) 1 M KOH initially and after 38000 CV scans (e) 0.5 M H2SO4 initially and after 38000 CV scans and (f) 1 M PBS initially and after 9000 CV scans. HER polarization curves of commercial Pt/C (10 wt.%) before and after 8000 CV scans in 1 M KOH (g), 0.5 M H2SO4 (h) and 1 M PBS (i). Adapted from Ref. [113] (color online).

  • Figure 10

    Low- and high-magnification SEM images of (a, b) NiCo-precursor NW/GDF and (c, d) NiCo2S4 NW/GDF. (e) Two electrode OER polarization curves (without iR compensation) of NiCo2S4 NW/GDF||NiCo2S4 NW/GDF, NiCo2S4 NW/CC||NiCo2S4 NW/CC, GDF||GDF, CC||CC, and RuO2||Pt/C. (f) Two-electrode cell stability of NiCo2S4 NW/GDF||NiCo2S4 NW/GDF electrode in 1.0 M KOH (color online).

  • Figure 11

    (a) Schematic diagram of the PEC cell, consisting of the assembled CdSe QDs/GDY photocathode, Pt wire as counter electrode, and corresponding interfacial migration process of the photogenerated excitons. (b) SEM images of the assembled CdSe QDs/GDY film. (c) The elemental mapping of carbon, selenium, sulfur and cadmium. (d) Open circuit potential response of the CdSe QDs/GDY photocathode under dark and illuminated conditions (300 W Xe lamp). (e) LSV scanning from 0.3 to −0.4 V at 2 mV/s with light off (black trace) and on (red trace) [123] (color online).

  • Figure 12

    Lithium diffusion in GDY layers top view (a), side view (b). (c) CV curves at various scan rates. (d) Galvanostatic charge-discharge voltage profiles at various current densities. (e) Ragone plots of GDY/AC LICs compared with previously reported graphite and graphene LICs. (f) Cycling stability of GDY/AC LIC at a current density of 200 mA/g [143] (color online).

  • Figure 13

    (a) Schematic representation of an assembled GDY-based battery. (b) Cycle performance of the GDY-1, GDY-2, and GDY-3 electrodes at a current density of 500 mA/g between 5 mV and 3 V. Li-storage of GDY in a Li-ion cell: (c) Li-intercalated GDY. (d) Three different sites for occupation by Li atoms in GDY, absorption of Li atoms on (e, f) both sides and (g, h) one side of a GDY plane [146] (color online).

  • Figure 14

    (a) Schematic of a sodium ion battery based on GDY. (b) Cyclic voltammogram (CV) profiles of the GDY-based electrode at a scan rate of 0.2 mV/s. (c) Differential curves of charge/discharge profiles of the GDY-based electrode at a current density of 50 mA/g. (d) Galvanostatic charge-discharge profiles at a current density of 50 mA/g for the first three cycles. (e) Rate performance at varied current density ranging from 20 to 4000 mA/g. (f) Cycle performance at a current density of 100 mA/g [156] (color online).

  • Figure 15

    (a) Localized orbital locator (LOL) maps and Mayer bond order analysis for the Pt2-GDY fragment (off-center adsorption site). (b) ESP surfaces with an isovalue of 0.0004 e/au3 for Pt2-GDY (off-center adsorption site). (c) Cyclic voltammetry curves of different counter electrodes. (d) Photocurrent density-voltage (J-V) curves of DSSCs using different counter electrodes [163] (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1