logo

SCIENCE CHINA Chemistry, Volume 61, Issue 9: 1088-1098(2018) https://doi.org/10.1007/s11426-018-9277-6

Applications of CBT-Cys click reaction: past, present, and future

More info
  • ReceivedApr 10, 2018
  • AcceptedMay 11, 2018
  • PublishedAug 9, 2018

Abstract

Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole (CBT) and D-cysteine (D-Cys) in fireflies and has high biocompatibility and controllability in physiological solutions. Under the control of pH, reduction, or enzyme, this CBT-based click reaction has been widely applied to a wide range of biomedical fields such as protein labeling, molecular imaging (e.g., optical imaging, nuclear imaging, magnetic resonance imaging and photoacoustic imaging), nanomaterial fabrication, cancer therapy, and other potentialities.


Funded by

the Ministry of Science and Technology of China(2016YFA0400904)

the National Natural Science Foundation of China(21725505,21675145)

the Major program of Development Foundation of Hefei Center for Physical Science and Technology(2016FXZY006)


Acknowledgment

This work was supported by the Ministry of Science and Technology of China (2016YFA0400904), the National Natural Science Foundation of China (21725505, 21675145), and the Major program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY006).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Kolb HC, Finn MG, Sharpless KB. Angew Chem Int Ed, 2001, 40: 2004-2021 CrossRef Google Scholar

[2] Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. J Am Chem Soc, 2003, 125: 3192-3193 CrossRef PubMed Google Scholar

[3] Agard NJ, Prescher JA, Bertozzi CR. J Am Chem Soc, 2004, 126: 15046-15047 CrossRef PubMed Google Scholar

[4] Speers AE, Adam GC, Cravatt BF. J Am Chem Soc, 2003, 125: 4686-4687 CrossRef PubMed Google Scholar

[5] White EH, McCapra F, Field GF. J Am Chem Soc, 1963, 85: 337-343 CrossRef Google Scholar

[6] Liang G, Ren H, Rao J. Nat Chem, 2010, 2: 54-60 CrossRef PubMed ADS Google Scholar

[7] Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Proc Natl Acad Sci USA, 2007, 104: 16793-16797 CrossRef PubMed ADS Google Scholar

[8] Yuan Y, Liang G. Org Biomol Chem, 2014, 12: 865-871 CrossRef PubMed Google Scholar

[9] Zheng Z, Chen P, Li G, Zhu Y, Shi Z, Luo Y, Zhao C, Fu Z, Cui X, Ji C, Wang F, Huang G, Liang G. Chem Sci, 2017, 8: 214-222 CrossRef PubMed Google Scholar

[10] Pipes GD, Kosky AA, Abel J, Zhang Y, Treuheit MJ, Kleemann GR. Pharm Res, 2005, 22: 1059-1068 CrossRef PubMed Google Scholar

[11] Ren H, Xiao F, Zhan K, Kim YP, Xie H, Xia Z, Rao J. Angew Chem Int Ed, 2009, 48: 9658-9662 CrossRef PubMed Google Scholar

[12] Wang X, Li Q, Yuan Y, Mei B, Huang R, Tian Y, Sun J, Cao C, Lu G, Liang G. Org Biomol Chem, 2012, 10: 8082-8086 CrossRef PubMed Google Scholar

[13] Yuan Y, Wang X, Mei B, Zhang D, Tang A, An L, He X, Jiang J, Liang G. Sci Rep, 2013, 3: 3523 CrossRef PubMed ADS Google Scholar

[14] Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW. J Am Chem Soc, 2011, 133: 11418-11421 CrossRef PubMed Google Scholar

[15] Kilpatrick LE, Friedman-Ohana R, Alcobia DC, Riching K, Peach CJ, Wheal AJ, Briddon SJ, Robers MB, Zimmerman K, Machleidt T, Wood KV, Woolard J, Hill SJ. Biochem Pharmacol, 2017, 136: 62-75 CrossRef PubMed Google Scholar

[16] Weissleder R, Mahmood U. Radiology, 2001, 219: 316-333 CrossRef PubMed Google Scholar

[17] Weissleder R. Science, 2006, 312: 1168-1171 CrossRef PubMed ADS Google Scholar

[18] Zhou Y, Zhuang Y, Li X, Ågren H, Yu L, Ding J, Zhu L. Chem Eur J, 2017, 23: 7642-7647 CrossRef PubMed Google Scholar

[19] Zhao P, Li X, Baryshnikov G, Wu B, Ågren H, Zhang J, Zhu L. Chem Sci, 2018, 9: 1323-1329 CrossRef PubMed Google Scholar

[20] Liu X, Liang G. Chem Commun, 2017, 53: 1037-1040 CrossRef PubMed Google Scholar

[21] Hai Z, Wu J, Saimi D, Ni Y, Zhou R, Liang G. Anal Chem, 2018, 90: 1520-1524 CrossRef PubMed Google Scholar

[22] Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park GL, Xie Y, Bae S, Henary M, Frangioni JV. Nat Biotechnol, 2013, 31: 148-153 CrossRef PubMed Google Scholar

[23] Yuan Y, Zhang J, Cao Q, An L, Liang G. Anal Chem, 2015, 87: 6180-6185 CrossRef PubMed Google Scholar

[24] Jiang J, Zhao Z, Hai Z, Wang H, Liang G. Anal Chem, 2017, 89: 9625-9628 CrossRef PubMed Google Scholar

[25] Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y. Angew Chem Int Ed, 2013, 52: 1175-1179 CrossRef PubMed Google Scholar

[26] Evans MS, Chaurette JP, Adams ST, Reddy GR, Paley MA, Aronin N, Prescher JA, Miller SC. Nat Methods, 2014, 11: 393-395 CrossRef PubMed Google Scholar

[27] Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM, Stahl A, Chang CJ. Proc Natl Acad Sci USA, 2016, 113: 14219-14224 CrossRef PubMed Google Scholar

[28] Conley NR, Dragulescu-Andrasi A, Rao J, Moerner WE. Angew Chem, 2012, 124: 3406-3409 CrossRef Google Scholar

[29] Li J, Chen L, Du L, Li M. Chem Soc Rev, 2013, 42: 662-676 CrossRef PubMed Google Scholar

[30] Bailey TS, Donor MT, Naughton SP, Pluth MD. Chem Commun, 2015, 51: 5425-5428 CrossRef PubMed Google Scholar

[31] Godinat A, Park HM, Miller SC, Cheng K, Hanahan D, Sanman LE, Bogyo M, Yu A, Nikitin GF, Stahl A, Dubikovskaya EA. ACS Chem Biol, 2013, 8: 987-999 CrossRef PubMed Google Scholar

[32] Yuan Y, Wang F, Tang W, Ding Z, Wang L, Liang L, Zheng Z, Zhang H, Liang G. ACS Nano, 2016, 10: 7147-7153 CrossRef Google Scholar

[33] Kathuria S, Gaetani S, Fegley D, Valiño F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D. Nat Med, 2003, 9: 76-81 CrossRef PubMed Google Scholar

[34] Zheng Z, Li G, Wu C, Zhang M, Zhao Y, Liang G. Chem Commun, 2017, 53: 3567-3570 CrossRef PubMed Google Scholar

[35] Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. NeuroImage, 2004, 23: S208-S219 CrossRef PubMed Google Scholar

[36] Ai L, Gao X, Xiong J. BMC Med Imag, 2014, 14: 6 CrossRef PubMed Google Scholar

[37] Weissleder R, Pittet MJ. Nature, 2008, 452: 580-589 CrossRef PubMed ADS Google Scholar

[38] Tegafaw T, Xu W, Wasi Ahmad M, Baeck JS, Chang Y, Bae JE, Chae KS, Kim TJ, Lee GH. Nanotechnology, 2015, 26: 365102 CrossRef PubMed ADS Google Scholar

[39] Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. J Am Chem Soc, 2010, 132: 13270-13278 CrossRef PubMed Google Scholar

[40] Liang G, Ronald J, Chen Y, Ye D, Pandit P, Ma ML, Rutt B, Rao J. Angew Chem Int Ed, 2011, 50: 6283-6286 CrossRef PubMed Google Scholar

[41] Cao CY, Shen YY, Wang JD, Li L, Liang GL. Sci Rep, 2013, 3: 1024 CrossRef PubMed Google Scholar

[42] Yuan Y, Ding Z, Qian J, Zhang J, Xu J, Dong X, Han T, Ge S, Luo Y, Wang Y, Zhong K, Liang G. Nano Lett, 2016, 16: 2686-2691 CrossRef PubMed ADS Google Scholar

[43] Mizukami S, Takikawa R, Sugihara F, Hori Y, Tochio H, Wälchli M, Shirakawa M, Kikuchi K. J Am Chem Soc, 2008, 130: 794-795 CrossRef PubMed Google Scholar

[44] Yuan Y, Sun H, Ge S, Wang M, Zhao H, Wang L, An L, Zhang J, Zhang H, Hu B, Wang J, Liang G. ACS Nano, 2014, 9: 761-768 CrossRef PubMed Google Scholar

[45] Yuan Y, Ge S, Sun H, Dong X, Zhao H, An L, Zhang J, Wang J, Hu B, Liang G. ACS Nano, 2015, 9: 5117-5124 CrossRef Google Scholar

[46] Gambhir SS. Nat Rev Cancer, 2002, 2: 683-693 CrossRef PubMed Google Scholar

[47] Wester HJ, Schottelius M, Scheidhauer K, Meisetschläger G, Herz M, Rau FC, Reubi JC, Schwaiger M. Eur J Nucl Med Mol Imag, 2003, 30: 117-122 CrossRef PubMed Google Scholar

[48] Miller PW, Long NJ, Vilar R, Gee AD. Angew Chem Int Ed, 2008, 47: 8998-9033 CrossRef PubMed Google Scholar

[49] Jeon J, Shen B, Xiong L, Miao Z, Lee KH, Rao J, Chin FT. Bioconjugate Chem, 2012, 23: 1902-1908 CrossRef PubMed Google Scholar

[50] Su X, Cheng K, Jeon J, Shen B, Venturin GT, Hu X, Rao J, Chin FT, Wu H, Cheng Z. Mol Pharm, 2014, 11: 3947-3956 CrossRef PubMed Google Scholar

[51] Inkster JAH, Colin DJ, Seimbille Y. Org Biomol Chem, 2015, 13: 3667-3676 CrossRef PubMed Google Scholar

[52] Colin DJ, Inkster JAH, Germain S, Seimbille Y. EJNMMI Radiopharm Chem, 2017, 1: 16 CrossRef PubMed Google Scholar

[53] Miao Q, Bai X, Shen Y, Mei B, Gao J, Li L, Liang G. Chem Commun, 2012, 48: 9738-9740 CrossRef PubMed Google Scholar

[54] Liu Y, Miao Q, Zou P, Liu L, Wang X, An L, Zhang X, Qian X, Luo S, Liang G. Theranostics, 2015, 5: 1058-1067 CrossRef PubMed Google Scholar

[55] Wang LV, Hu S. Science, 2012, 335: 1458-1462 CrossRef PubMed ADS Google Scholar

[56] de la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS. Nano Lett, 2010, 10: 2168-2172 CrossRef PubMed ADS Google Scholar

[57] Dragulescu-Andrasi A, Kothapalli SR, Tikhomirov GA, Rao J, Gambhir SS. J Am Chem Soc, 2013, 135: 11015-11022 CrossRef PubMed Google Scholar

[58] Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Science, 2004, 303: 1352-1355 CrossRef PubMed ADS Google Scholar

[59] Jayawarna V, Ali M, Jowitt T , Miller A , Saiani A, Gough J , Ulijn R . Adv Mater, 2006, 18: 611-614 CrossRef Google Scholar

[60] Yang Z, Liang G, Ma M, Abbah AS, Lu WW, Xu B. Chem Commun, 2007, 354: 843-845 CrossRef PubMed Google Scholar

[61] Yuan Y, Zhang J, Wang M, Mei B, Guan Y, Liang G. Anal Chem, 2013, 85: 1280-1284 CrossRef PubMed Google Scholar

[62] Liu S, Tang A, Xie M, Zhao Y, Jiang J, Liang G. Angew Chem Int Ed, 2015, 54: 3639-3642 CrossRef PubMed Google Scholar

[63] Zheng Z, Chen P, Xie M, Wu C, Luo Y, Wang W, Jiang J, Liang G. J Am Chem Soc, 2016, 138: 11128-11131 CrossRef PubMed Google Scholar

[64] Yuan Y, Wang L, Du W, Ding Z, Zhang J, Han T, An L, Zhang H, Liang G. Angew Chem Int Ed, 2015, 54: 9700-9704 CrossRef PubMed Google Scholar

[65] Ai F, Ju Q, Zhang X, Chen X, Wang F, Zhu G. Sci Rep, 2015, 5: 10785 CrossRef PubMed ADS Google Scholar

[66] Xu CT, Zhan Q, Liu H, Somesfalean G, Qian J, He S, Andersson-Engels S. Laser Photonics Rev, 2013, 7: 663-697 CrossRef Google Scholar

[67] Ai X, Ho CJH, Aw J, Attia ABE, Mu J, Wang Y, Wang X, Wang Y, Liu X, Chen H, Gao M, Chen X, Yeow EKL, Liu G, Olivo M, Xing B. Nat Commun, 2016, 7: 10432 CrossRef PubMed ADS Google Scholar

[68] Wang P, Zhang CJ, Chen G, Na Z, Yao SQ, Sun H. Chem Commun, 2013, 49: 8644-8646 CrossRef PubMed Google Scholar

[69] Cheng Y, Peng H, Chen W, Ni N, Ke B, Dai C, Wang B. Chem Eur J, 2013, 19: 4036-4042 CrossRef PubMed Google Scholar

[70] Yuan Y, Li D, Zhang J, Chen X, Zhang C, Ding Z, Wang L, Zhang X, Yuan J, Li Y, Kang Y, Liang G. Chem Sci, 2015, 6: 6425-6431 CrossRef PubMed Google Scholar

[71] Baker M. Nature, 2010, 463: 977-980 CrossRef PubMed ADS Google Scholar

  • Scheme 1

    Scheme of controlled condensation reaction between 2-cyano-benzathiazole (CBT) and 1,2-aminothiol group of cysteine (Cys). (a) The condensation reaction between free Cys and CBT for the synthesis of luciferin in PBS. (b) Proposed two-step condensation of monomers, which can be controlled by pH, reduction or a protease [6].

  • Figure 1

    Schematic illustration for effectively labeling thiols with enahnced emission induced by FRET [13] (color online).

  • Figure 2

    (a) Schematic illustrations of reduction-controlled condensation of 1 to self-assemble into dual quenched nanoparticles (1-NPs) for the sensing of furin activity. (b) Fluorescence spectra of 25 μM 1 (black) and 25 μM 1 incubated with 1 mM TCEP at 37 °C for 1 h (i.e., 1-NPs dispersion) (red) in furin buffer. Excitation: 465 nm. (c) Time-course fluorescent spectra of 12.5 μM 1-NPsdispersionincubated with 0.1 nmol U−1 furin in furin buffer for 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 h at 37 °C. Excitation: 465 nm. (d) Confocal fluorescence and overlay images of MDA-MB-468 cells incubated with 20 μM 1 together with 50 μM f (Cys(StBu)-Lys-CBT) for 2 h (top row), pre-incubated with 1 mM furin inhibitor II (H-(D)Arg-Arg-Arg-Arg-Arg-Arg-NH2) for 30 min then 20 μM 1 together with 50 μM f for 2 h (top middle row) in serum-free DMEM at 37 °C. Blue is Hoechst 33342 staining of the nucleus, green is from FITC in 1, red is immunofluorescence staining of furin. Scalebar: 10 μm. [21] (color online).

  • Figure 3

    (a) Chemical structure of 2 and schematic illustration of intracellular reduction-controlled self-assembly and FAAH-directed disassembly of cyclic D-luciferin-based 2-NPs for persistent bioluminescence imaging of FAAH. (b) Bioluminescence images of MDA-MB-231-fLuc tumor-bearing mice after being intraperitoneally injected with 0.1 g/kg 2(123 μmol/kg) or 3 mg/kg URB597 [33] with 0.1 g/kg 2, 0.07 g/kg AMA (246 μmol/kg),0.1 g/kg Lys-Luc (246 μmol/kg), or 0.07 g/kg NH2-Luc (246 μmol/kg) for 0.5, 1, 2, 4, 7, 11, and 16 h, respectively [32] (color online).

  • Figure 4

    (a) Chemical structures of 3 and 3-Scr. (b) Schematic illustration of intracellular Casp3/7-instructed aggregation of Fe3O4@3 NPs. (c) T2-weighted MR phantom images (echo time: 70 ms), and T2 relaxation times of Fe3O4@3 NPs incubated with healthy cells or apoptotic cells, Fe3O4@3-Scr NPs incubated with healthy cells or apoptotic cells at 37 °C for 1.5 h on a 9.4 T MR scanner (TR 5,500 ms, TE 10-120 ms). (d) In vivo aggregation of Fe3O4@3 NPs enhances T2 MR imaging of tumor apoptosis. In vivo T2-weighted coronal MR images of Fe3O4@3 NPs-injected saline-treated mice, Fe3O4@3 NPs-injected DOX-treated mice, Fe3O4@3-Scr NPs-injected saline-treated mice, and Fe3O4@3-ScrNPs-injected DOX-treated mice at 0 h (top) or 3 h post injection (bottom) [42] (color online).

  • Figure 5

    (a) Schematic illustration of GSH-controlled self-assembly to turn 19F NMR signals “off” and Casp3/7-controlled disassembly of 19F NPs to turn 19F NMR signals “on”. (b) Chemical structures of 4 and 4-Scr [44] (color online).

  • Figure 6

    (a) Effect of co-incubation on cellular efflux and retaining of radioactivity in MDA-MB-468 cells: radioactivity retained in cells after 160 min’ efflux [53]. (b) Representative whole body coronal microPET images of mice with subcutaneously xenografted MDA-MB-468 tumors at different time points post intravenous injections of 85 µCi 6 (top) or 85 µCi 6 with 20 µmol/kg 6-Cold (bottom) via tail veins. Tumors are indicated by white arrows [54] (color online).

  • Figure 7

    (a) Diagram depicting the mechanism of action of furin probe 7 and generation of PA contrast. (b) PA imaging of furin-like activity in cells. LoVo and MDA-MB-231 cells (with and without 200 μM furin inhibitor I and II) were incubated with 2 μM solution of furin probe 7 in DMEM for 3 h; cells were washed and harvested, and equal number of cells (7.5 milion) was added to agarose gel wells and embedded into the agarose gel phantom. (c) PA imaging of furin-like activity in tumor-bearing mice. Representative PA images (maximum amplitude projections) of mice tumors visualized in Amide software, acquired for 11 min at t=0 min (pre-injection) and t=60 min after furin probe 7 injection [57] (color online).

  • Figure 8

    (a) Schematic illustration of ALP-directed self-assembly of 8 into nanofiber 9 in extracellular environment and GSH-controlled condensation of 9 to yield the cyclic amphiphilic dimer 9-D which self-assembles into nanofiber 9-D in intracellular environment. Blue parts indicate the hydrophilic structures, and red parts indicate the hydrophobic structures. (b) Cryo-TEM images of the nanofibers in gel 9 and gel 9-D at 1.0 wt % (top row). The proposed molecular arrangements of 9 in nanofiber 9 (left of bottom row) and in nanofiber 9-D (right of bottom row). Top (left) and side (right) views [63] (color online).

  • Figure 9

    (a) Chemical structures of CBT-Taxol. (b) Schematic illustration of intracellular furin-controlled self-assembly of Taxol-NPs for anti MDR. (c) Tubulin immunofluorescence staining of taxol-resistant HCT 116 cells treated with Tubulin immunofluorescence staining of taxol-resistant HCT 116 cells treated with 200 nm taxol or 200 nm CBT-Taxol (co-incubated with 50 mm C) for 0, 4, 8, 12, 24, 48, 72, and 96 h. [64] (color online).

  • Figure 10

    Illustration of the microenvironment-sensitive strategy for covalent cross-linking of peptide-pre-modified UCNs in tumour areas [67] (color online).

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1