logo

SCIENCE CHINA Chemistry, Volume 61, Issue 10: 1205-1213(2018) https://doi.org/10.1007/s11426-018-9292-7

Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis

More info
  • ReceivedApr 24, 2018
  • AcceptedMay 24, 2018
  • PublishedAug 2, 2018

Abstract

As a two-dimensional (2D) material, polymeric carbon nitride (g-C3N4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the optimization of photocatalytic performance in 2D g-C3N4. Some of the latest structural engineering methods were summed up, where the relevant influences on the behaviors of photoinduced species were emphasized. Furthermore, the construction strategies for band structure modulation and charge separation promotion were then discussed in detail. A brief discussion on the opportunity and challenge of 2Dg-C3N4-based photocatalysis are presented as the conclusion of this review.


Funded by

the National Natural Science Foundation of China(21437003,21673126,21621003,21761142017)

the Youth Innovation Promotion Association of CAS(2017493)

Young Elite Scientist Sponsorship Program by CAST and Collaborative Innovation Center for Regional Environmental Quality.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21437003, 21673126, 21621003, 21761142017), the Youth Innovation Promotion Association of CAS (2017493), Young Elite Scientist Sponsorship Program by CAST and Collaborative Innovation Center for Regional Environmental Quality.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. Nat Mater, 2009, 8: 76-80 CrossRef PubMed ADS Google Scholar

[2] Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Chem Rev, 2016, 116: 7159-7329 CrossRef PubMed Google Scholar

[3] Wang H, Zhang XD, Xie Y. Chin J Inorg Chem, 2017, 33: 1897–1913. Google Scholar

[4] Wen J, Xie J, Chen X, Li X. Appl Surf Sci, 2017, 391: 72-123 CrossRef ADS Google Scholar

[5] Cao S, Low J, Yu J, Jaroniec M. Adv Mater, 2015, 27: 2150-2176 CrossRef PubMed Google Scholar

[6] Zheng Y, Lin L, Wang B, Wang X. Angew Chem Int Ed, 2015, 54: 12868-12884 CrossRef PubMed Google Scholar

[7] Liu F, Yu J, Tu G, Qu L, Xiao J, Liu Y, Wang L, Lei J, Zhang J. Appl Catal B-Environ, 2017, 201: 1-11 CrossRef Google Scholar

[8] Peng Y, Wang L, Liu Y, Chen H, Lei J, Zhang J. Eur J Inorg Chem, 2017, 2017: 4797-4802 CrossRef Google Scholar

[9] Iqbal W, Dong C, Xing M, Tan X, Zhang J. Catal Sci Technol, 2017, 7: 1726-1734 CrossRef Google Scholar

[10] Peng Y, Liu F, Wang L, Liu Y, Lei J, Zhang J. RSC Adv, 2017, 7: 52626-52631 CrossRef Google Scholar

[11] Lei J, Liu F, Wang L, Liu Y, Zhang J. RSC Adv, 2017, 7: 27377-27383 CrossRef Google Scholar

[12] Zhou L, Wang L, Zhang J, Lei J, Liu Y. Eur J Inorg Chem, 2016, 2016: 5387-5392 CrossRef Google Scholar

[13] Li H, Wang L, Liu Y, Lei J, Zhang J. Res Chem Intermed, 2016, 42: 3979-3998 CrossRef Google Scholar

[14] Lei J, Chen Y, Shen F, Wang L, Liu Y, Zhang J. J Alloys Compd, 2015, 631: 328-334 CrossRef Google Scholar

[15] Lei J, Chen Y, Wang L, Liu Y, Zhang J. J Mater Sci, 2015, 50: 3467-3476 CrossRef ADS Google Scholar

[16] Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM. J Mater Chem, 2008, 18: 4893-4908 CrossRef Google Scholar

[17] Miller TS, Jorge AB, Suter TM, Sella A, Corà F, McMillan PF. Phys Chem Chem Phys, 2017, 19: 15613-15638 CrossRef PubMed ADS Google Scholar

[18] Dong X, Cheng F. J Mater Chem A, 2015, 3: 23642-23652 CrossRef Google Scholar

[19] Xu J, Zhang L, Shi R, Zhu Y. J Mater Chem A, 2013, 1: 14766-14772 CrossRef Google Scholar

[20] Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. J Am Chem Soc, 2013, 135: 18-21 CrossRef PubMed Google Scholar

[21] Niu P, Zhang L, Liu G, Cheng HM. Adv Funct Mater, 2012, 22: 4763-4770 CrossRef Google Scholar

[22] Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM. Adv Mater, 2013, 25: 2452-2456 CrossRef PubMed Google Scholar

[23] Zhang J, Chen Y, Wang X. Energy Environ Sci, 2015, 8: 3092-3108 CrossRef Google Scholar

[24] Wei W, Jacob T. Phys Rev B, 2013, 87: 085202 CrossRef ADS Google Scholar

[25] Wang H, Jiang S, Chen S, Zhang X, Shao W, Sun X, Zhao Z, Zhang Q, Luo Y, Xie Y. Chem Sci, 2017, 8: 4087-4092 CrossRef PubMed Google Scholar

[26] Wang H, Sun X, Li D, Zhang X, Chen S, Shao W, Tian Y, Xie Y. J Am Chem Soc, 2017, 139: 2468-2473 CrossRef PubMed Google Scholar

[27] Wang H, Jiang S, Chen S, Li D, Zhang X, Shao W, Sun X, Xie J, Zhao Z, Zhang Q, Tian Y, Xie Y. Adv Mater, 2016, 28: 6940-6945 CrossRef PubMed Google Scholar

[28] Buchalska M, Kobielusz M, Matuszek A, Pacia M, Wojtyła S, Macyk W. ACS Catal, 2015, 5: 7424-7431 CrossRef Google Scholar

[29] Buchalska M, Labuz P, Bujak Ł, Szewczyk G, Sarna T, Maćkowski S, Macyk W. Dalton Trans, 2013, 42: 9468-9475 CrossRef PubMed Google Scholar

[30] Jares-Erijman EA, Jovin TM. Nat Biotechnol, 2003, 21: 1387-1395 CrossRef PubMed Google Scholar

[31] Kovalev D, Gross E, Künzner N, Koch F, Timoshenko VY, Fujii M. Phys Rev Lett, 2002, 89: 137401 CrossRef PubMed ADS Google Scholar

[32] Zhang H, Zuo X, Tang H, Li G, Zhou Z. Phys Chem Chem Phys, 2015, 17: 6280-6288 CrossRef PubMed ADS Google Scholar

[33] Gao G, Jiao Y, Waclawik ER, Du A. J Am Chem Soc, 2016, 138: 6292-6297 CrossRef PubMed Google Scholar

[34] Lau VWH, Moudrakovski I, Botari T, Weinberger S, Mesch MB, Duppel V, Senker J, Blum V, Lotsch BV. Nat Commun, 2016, 7: 12165 CrossRef PubMed ADS Google Scholar

[35] Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y. J Phys Chem C, 2012, 116: 23485-23493 CrossRef Google Scholar

[36] Corp KL, Schlenker CW. J Am Chem Soc, 2017, 139: 7904-7912 CrossRef PubMed Google Scholar

[37] Zhu M, Kim S, Mao L, Fujitsuka M, Zhang J, Wang X, Majima T. J Am Chem Soc, 2017, 139: 13234-13242 CrossRef PubMed Google Scholar

[38] Chen Z, Zhang Q, Luo Y. ChemPhotoChem, 2017, 1: 350-354 CrossRef Google Scholar

[39] Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, Fu H. Angew Chem Int Ed, 2016, 55: 1830-1834 CrossRef PubMed Google Scholar

[40] Kang Y, Yang Y, Yin LC, Kang X, Liu G, Cheng HM. Adv Mater, 2015, 27: 4572-4577 CrossRef PubMed Google Scholar

[41] Li Y, Wang Z, Xia T, Ju H, Zhang K, Long R, Xu Q, Wang C, Song L, Zhu J, Jiang J, Xiong Y. Adv Mater, 2016, 28: 6959-6965 CrossRef PubMed Google Scholar

[42] Zhang G, Li G, Lan ZA, Lin L, Savateev A, Heil T, Zafeiratos S, Wang X, Antonietti M. Angew Chem Int Ed, 2017, 56: 13445-13449 CrossRef PubMed Google Scholar

[43] Shi L, Chang K, Zhang H, Hai X, Yang L, Wang T, Ye J. Small, 2016, 12: 4431-4439 CrossRef PubMed Google Scholar

[44] Ma L, Fan H, Li M, Tian H, Fang J, Dong G. J Mater Chem A, 2015, 3: 22404-22412 CrossRef Google Scholar

[45] Yang P, Ou H, Fang Y, Wang X. Angew Chem, 2017, 129: 4050-4054 CrossRef Google Scholar

[46] Xia P, Zhu B, Yu J, Cao S, Jaroniec M. J Mater Chem A, 2017, 5: 3230-3238 CrossRef Google Scholar

[47] Schwinghammer K, Mesch MB, Duppel V, Ziegler C, Senker J, Lotsch BV. J Am Chem Soc, 2014, 136: 1730-1733 CrossRef PubMed Google Scholar

[48] Ji J, Wen J, Shen Y, Lv Y, Chen Y, Liu S, Ma H, Zhang Y. J Am Chem Soc, 2017, 139: 11698-11701 CrossRef PubMed Google Scholar

[49] Lu X, Xu K, Chen P, Jia K, Liu S, Wu C. J Mater Chem A, 2014, 2: 18924-18928 CrossRef Google Scholar

[50] Kang Y, Yang Y, Yin LC, Kang X, Wang L, Liu G, Cheng HM. Adv Mater, 2016, 28: 6471-6477 CrossRef PubMed Google Scholar

[51] Xiong T, Cen W, Zhang Y, Dong F. ACS Catal, 2016, 6: 2462-2472 CrossRef Google Scholar

[52] Wang Y, Bayazit MK, Moniz SJA, Ruan Q, Lau CC, Martsinovich N, Tang J. Energy Environ Sci, 2017, 10: 1643-1651 CrossRef Google Scholar

[53] Lin Z, Wang X. Angew Chem Int Ed, 2013, 52: 1735-1738 CrossRef PubMed Google Scholar

[54] Ruan Q, Luo W, Xie J, Wang Y, Liu X, Bai Z, Carmalt CJ, Tang J. Angew Chem Int Ed, 2017, 56: 8221-8225 CrossRef PubMed Google Scholar

[55] Huang ZF, Song J, Pan L, Wang Z, Zhang X, Zou JJ, Mi W, Zhang X, Wang L. Nano Energy, 2015, 12: 646-656 CrossRef Google Scholar

[56] Tian N, Zhang Y, Li X, Xiao K, Du X, Dong F, Waterhouse GIN, Zhang T, Huang H. Nano Energy, 2017, 38: 72-81 CrossRef Google Scholar

[57] Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, Waterhouse GIN, Wu LZ, Tung CH, Zhang T. Adv Mater, 2017, 29: 1605148 CrossRef PubMed Google Scholar

[58] Liang Q, Li Z, Huang ZH, Kang F, Yang QH. Adv Funct Mater, 2015, 25: 6885-6892 CrossRef Google Scholar

[59] Niu P, Qiao M, Li Y, Huang L, Zhai T. Nano Energy, 2018, 44: 73-81 CrossRef Google Scholar

[60] Jiang W, Luo W, Wang J, Zhang M, Zhu Y. J Photochem Photobiol C, 2016, 28: 87-115 CrossRef Google Scholar

[61] Wang J, Shi W, Liu D, Zhang ZJ, Zhu Y, Wang D. Appl Catal B-Environ, 2017, 202: 289-297 CrossRef Google Scholar

[62] Zhang M, Yao W, Lv Y, Bai X, Liu Y, Jiang W, Zhu Y. J Mater Chem A, 2014, 2: 11432-11438 CrossRef Google Scholar

[63] Zhang Y, Mori T, Niu L, Ye J. Energy Environ Sci, 2011, 4: 4517-4521 CrossRef Google Scholar

[64] Bai X, Wang L, Wang Y, Yao W, Zhu Y. Appl Catal B-Environ, 2014, 152-153: 262-270 CrossRef Google Scholar

[65] Bai X, Sun C, Wu S, Zhu Y. J Mater Chem A, 2015, 3: 2741-2747 CrossRef Google Scholar

[66] Li J, Liu E, Ma Y, Hu X, Wan J, Sun L, Fan J. Appl Surf Sci, 2016, 364: 694-702 CrossRef ADS Google Scholar

[67] Li XH, Antonietti M. Chem Soc Rev, 2013, 42: 6593-6604 CrossRef PubMed Google Scholar

[68] Che W, Cheng W, Yao T, Tang F, Liu W, Su H, Huang Y, Liu Q, Liu J, Hu F, Pan Z, Sun Z, Wei S. J Am Chem Soc, 2017, 139: 3021-3026 CrossRef PubMed Google Scholar

[69] Yu Y, Yan W, Wang X, Li P, Gao W, Zou H, Wu S, Ding K. Adv Mater, 2018, 30: 1705060 CrossRef PubMed Google Scholar

[70] Lin L, Ou H, Zhang Y, Wang X. ACS Catal, 2016, 6: 3921-3931 CrossRef Google Scholar

[71] Ou H, Lin L, Zheng Y, Yang P, Fang Y, Wang X. Adv Mater, 2017, 29: 1700008 CrossRef PubMed Google Scholar

  • Figure 1

    The Kohn-Sham orbitals of the (a) valence and (b) conduction bands in g-C3N4 monolayer [20]. (c) The calculated dielectric function for light polarization parallel to g-C3N4 layer with/without consideration of electron-hole interactions. (d) The electron probability distributions in real space for the excitonic states in g-C3N4 [24] (color online).

  • Figure 2

    (a) Transient spectra and (b) corresponding kinetic traces of bulk g-C3N4 and bulk g-C3N4/chemically exfoliated g-C3N4 nanosheets. (c) Schematic illustration of the electron-transfer process between bulk g-C3N4 and chemically exfoliated g-C3N4 nanosheets [37] (color online).

  • Figure 3

    Normalized fluorescence and phosphorescence spectra at different delay times at (a) 300 K and (b) 77 K, where PF and PH denote fluorescence and phosphorescence, respectively. (c) Transient absorption kinetic traces and (d) schemed photophysical processes for g-C3N4 system [25] (color online).

  • Figure 4

    Schematic illustrations of exfoliation strategies for preparing g-C3N4 nanosheets by (a) H2O [20], (b) steam reforming [45], (c) NH3 [46], (d) H2SO4 (98 wt%) [19], (e) mechanical grinding [48], and (f) thermal oxidation [21] (color online).

  • Figure 5

    Scheme for the preparation of (A) ONLH and (B) K-intercalated g-C3N4 [51,52] (color online).

  • Figure 6

    Theoretical calculated dielectric function with different defects [59] (color online).

  • Figure 7

    (a) Scheme for the band structure of TCNQ-C3N4. (b) Scheme for the preparation of CNG and Efb of different samples [62,63] (color online).

  • Figure 8

    (a) Scheme of the in-plane heterostructure. (b) Calculated adsorption energy and (c) Fermi energy level of different samples [68] (color online).

  • Figure 9

    (a) Scheme for the stacking distance. (b) XRD and (c) DRS of different samples [42] (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1