logo

SCIENCE CHINA Chemistry, Volume 61, Issue 9: 1062-1087(2018) https://doi.org/10.1007/s11426-018-9296-6

Ion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) and related applications

More info
  • ReceivedApr 23, 2018
  • AcceptedMay 27, 2018
  • PublishedAug 8, 2018

Abstract

Ion exchange membranes (IEMs) play a significant role in fields of energy and environment, for instance fuel cells, diffusion dialysis, electrodialysis, etc. The limited choice of commercially available IEMs has produced a strong demand of fabricating IEMs with improved properties via facile synthetic strategies over the past two decades. Poly(phenylene oxide) (PPO) is considered as a promising polymeric material for constructing practical IEMs, due to its advantages of good physicochemical properties, low manufacturing cost and easy post functionalization. In this review, we present the accumulated efforts in synthetic strategies towards diverse types of PPO-based IEMs. Relation between polymer structures and the resulted features is discussed in detail. Besides, applying IEMs from PPO and its derivatives in fuel cell, diffusion dialysis and electrodialysis is summarized and commented.


Funded by

the National Natural Science Foundation of China(21506201,21720102003,91534203)

the Key Technologies R&D Program of Anhui Province(17030901079)

K. C. Wong Education Foundation(2016-11)

International Partnership Program of Chinese Academy of Sciences(21134ky5b20170010)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21506201, 21720102003, 91534203), the Key Technologies R&D Program of Anhui Province (17030901079), K. C. Wong Education Foundation (2016-11) and International Partnership Program of Chinese Academy of Sciences (21134ky5b20170010).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Li N, Guiver MD. Macromolecules, 2014, 47: 2175-2198 CrossRef ADS Google Scholar

[2] Li X, Zhang H, Mai Z, Zhang H, Vankelecom I. Energy Environ Sci, 2011, 4: 1147 CrossRef Google Scholar

[3] Afsar NU, Erigene B, Irfan M, Wu B, Xu T, Ji W, Emmanuel K, Ge L, Xu T. Sep Purif Tech, 2018, 193: 11-20 CrossRef Google Scholar

[4] Xu T, Huang C. AIChE J, 2008, 54: 3147-3159 CrossRef Google Scholar

[5] Mauritz KA, Moore RB. Chem Rev, 2004, 104: 4535-4586 CrossRef Google Scholar

[6] Xu T, Wu D, Wu L. Prog Polym Sci, 2008, 33: 894-915 CrossRef Google Scholar

[7] He G, Li Z, Zhao J, Wang S, Wu H, Guiver MD, Jiang Z. Adv Mater, 2015, 27: 5280-5295 CrossRef PubMed Google Scholar

[8] Couture G, Alaaeddine A, Boschet F, Ameduri B. Prog Polym Sci, 2011, 36: 1521-1557 CrossRef Google Scholar

[9] Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. Chem Rev, 2004, 104: 4587-4612 CrossRef Google Scholar

[10] Hibbs MR, Fujimoto CH, Cornelius CJ. Macromolecules, 2009, 42: 8316-8321 CrossRef Google Scholar

[11] Alam TM, Hibbs MR. Macromolecules, 2014, 47: 1073-1084 CrossRef ADS Google Scholar

[12] Li N, Shin DW, Hwang DS, Lee YM, Guiver MD. Macromolecules, 2010, 43: 9810-9820 CrossRef ADS Google Scholar

[13] Mohanty AD, Lee YB, Zhu L, Hickner MA, Bae C. Macromolecules, 2014, 47: 1973-1980 CrossRef ADS Google Scholar

[14] Lee S, Ann J, Lee H, Kim JH, Kim CS, Yang TH, Bae B. J Mater Chem A, 2015, 3: 1833-1836 CrossRef Google Scholar

[15] Dong T, Hu J, Ueda M, Wu Y, Zhang X, Wang L. J Mater Chem A, 2016, 4: 2321-2331 CrossRef Google Scholar

[16] Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S. Macromolecules, 2004, 37: 7960-7967 CrossRef ADS Google Scholar

[17] Gu F, Dong H, Li Y, Si Z, Yan F. Macromolecules, 2013, 47: 208-216 CrossRef ADS Google Scholar

[18] Deavin OI, Murphy S, Ong AL, Poynton SD, Zeng R, Herman H, Varcoe JR. Energy Environ Sci, 2012, 5: 8584 CrossRef Google Scholar

[19] Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M. J Am Chem Soc, 2006, 128: 1762-1769 CrossRef PubMed Google Scholar

[20] Kins CF, Sengupta E, Kaltbeitzel A, Wagner M, Lieberwirth I, Spiess HW, Hansen MR. Macromolecules, 2014, 47: 2645-2658 CrossRef ADS Google Scholar

[21] Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T. J Mater Chem A, 2015, 3: 15015-15019 CrossRef Google Scholar

[22] Li N, Leng Y, Hickner MA, Wang CY. J Am Chem Soc, 2013, 135: 10124-10133 CrossRef PubMed Google Scholar

[23] Li Y, Xu T, Gong M. J Membr Sci, 2006, 279: 200-208 CrossRef Google Scholar

[24] Dang HS, Weiber EA, Jannasch P. J Mater Chem A, 2015, 3: 5280-5284 CrossRef Google Scholar

[25] Choe YK, Fujimoto C, Lee KS, Dalton LT, Ayers K, Henson NJ, Kim YS. Chem Mater, 2014, 26: 5675-5682 CrossRef Google Scholar

[26] Ran J, Wu L, Ru Y, Hu M, Din L, Xu T. Polym Chem, 2015, 6: 5809-5826 CrossRef Google Scholar

[27] Tongwen X, Weihua Y. J Membr Sci, 2001, 190: 159-166 CrossRef Google Scholar

[28] Zhang S, Xu T, Wu C. J Membr Sci, 2006, 269: 142-151 CrossRef Google Scholar

[29] Yan J, Hickner MA. Macromolecules, 2010, 43: 2349-2356 CrossRef ADS Google Scholar

[30] Mondal AN, He Y, Wu L, Khan MI, Emmanuel K, Hossain MM, Ge L, Xu T. J Mater Chem A, 2017, 5: 1022-1027 CrossRef Google Scholar

[31] Zhu L, Pan J, Wang Y, Han J, Zhuang L, Hickner MA. Macromolecules, 2016, 49: 815-824 CrossRef ADS Google Scholar

[32] He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang ZJ, Xu T. Sci Rep, 2015, 5: 13417 CrossRef PubMed ADS Google Scholar

[33] Ran J, Wu L, Xu T. Polym Chem, 2013, 4: 4612-4620 CrossRef Google Scholar

[34] Ge Q, Ran J, Miao J, Yang Z, Xu T. ACS Appl Mater Interfaces, 2015, 7: 28545-28553 CrossRef Google Scholar

[35] Hou J, Wang X, Liu Y, Ge Q, Yang Z, Wu L, Xu T. J Membr Sci, 2016, 518: 282-288 CrossRef Google Scholar

[36] Pan J, Li Y, Zhuang L, Lu J. Chem Commun, 2010, 46: 8597-8599 CrossRef PubMed Google Scholar

[37] Gu S, Cai R, Yan Y. Chem Commun, 2011, 47: 2856-2858 CrossRef PubMed Google Scholar

[38] Han J, Peng H, Pan J, Wei L, Li G, Chen C, Xiao L, Lu J, Zhuang L. ACS Appl Mater Interfaces, 2013, 5: 13405-13411 CrossRef PubMed Google Scholar

[39] Tsai TH, Ertem SP, Maes AM, Seifert S, Herring AM, Coughlin EB. Macromolecules, 2015, 48: 655-662 CrossRef ADS Google Scholar

[40] Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner MA. Polym Chem, 2016, 7: 2464-2475 CrossRef Google Scholar

[41] Ertem SP, Tsai TH, Donahue MM, Zhang W, Sarode H, Liu Y, Seifert S, Herring AM, Coughlin EB. Macromolecules, 2015, 49: 153-161 CrossRef ADS Google Scholar

[42] Yang Z, Hou J, Wang X, Wu L, Xu T. Macromol Rapid Commun, 2015, 36: 1362-1367 CrossRef PubMed Google Scholar

[43] Hou J, Liu Y, Ge Q, Yang Z, Wu L, Xu T. J Power Sources, 2018, 375: 404-411 CrossRef ADS Google Scholar

[44] Thomas OD, Soo KJWY, Peckham TJ, Kulkarni MP, Holdcroft S. J Am Chem Soc, 2012, 134: 10753-10756 CrossRef PubMed Google Scholar

[45] Lin B, Qiu L, Qiu B, Peng Y, Yan F. Macromolecules, 2011, 44: 9642-9649 CrossRef ADS Google Scholar

[46] Wang J, Li S, Zhang S. Macromolecules, 2010, 43: 3890-3896 CrossRef ADS Google Scholar

[47] Zhang Q, Li S, Zhang S. Chem Commun, 2010, 46: 7495-7497 CrossRef PubMed Google Scholar

[48] Liu L, Li Q, Dai J, Wang H, Jin B, Bai R. J Membr Sci, 2014, 453: 52-60 CrossRef Google Scholar

[49] Gu S, Cai R, Luo T, Chen Z, Sun M, Liu Y, He G, Yan Y. Angew Chem Int Ed, 2009, 48: 6499-6502 CrossRef PubMed Google Scholar

[50] Noonan KJT, Hugar KM, Kostalik Iv HA, Lobkovsky EB, Abruña HD, Coates GW. J Am Chem Soc, 2012, 134: 18161-18164 CrossRef PubMed Google Scholar

[51] Miyake J, Fukasawa K, Watanabe M, Miyatake K. J Polym Sci Part A-Polym Chem, 2014, 52: 383-389 CrossRef ADS Google Scholar

[52] Zhu Y, He Y, Ge X, Liang X, Shehzad MA, Hu M, Liu Y, Wu L, Xu T. J Mater Chem A, 2018, 6: 527-534 CrossRef Google Scholar

[53] Lin X, Wu L, Liu Y, Ong AL, Poynton SD, Varcoe JR, Xu T. J Power Sources, 2012, 217: 373-380 CrossRef Google Scholar

[54] Mondal AN, He Y, Ge L, Wu L, Emmanuel K, Hossain MM, Xu T. RSC Adv, 2017, 7: 29794-29805 CrossRef Google Scholar

[55] Yang Z, Liu Y, Guo R, Hou J, Wu L, Xu T. Chem Commun, 2016, 52: 2788-2791 CrossRef PubMed Google Scholar

[56] Wu L, Xu T, Yang W. J Membr Sci, 2006, 286: 185-192 CrossRef Google Scholar

[57] Li Q, Liu L, Miao Q, Jin B, Bai R. Chem Commun, 2014, 50: 2791 CrossRef PubMed Google Scholar

[58] Percec S. J Appl Polym Sci, 1987, 33: 191-203 CrossRef Google Scholar

[59] Bruson HA, MacMullen CW. J Am Chem Soc, 1941, 63: 270-272 CrossRef Google Scholar

[60] Dang HS, Jannasch P. J Mater Chem A, 2017, 5: 21965-21978 CrossRef Google Scholar

[61] Dang HS, Jannasch P. J Mater Chem A, 2016, 4: 11924-11938 CrossRef Google Scholar

[62] Dang HS, Jannasch P. J Mater Chem A, 2016, 4: 17138-17153 CrossRef Google Scholar

[63] Dang HS, Jannasch P. Macromolecules, 2015, 48: 5742-5751 CrossRef ADS Google Scholar

[64] Zhu L, Pan J, Christensen CM, Lin B, Hickner MA. Macromolecules, 2016, 49: 3300-3309 CrossRef ADS Google Scholar

[65] Jo J, Chi C, Höger S, Wegner G, Yoon DY. Chem Eur J, 2004, 10: 2681-2688 CrossRef PubMed Google Scholar

[66] Elabd YA, Hickner MA. Macromolecules, 2011, 44: 1-11 CrossRef ADS Google Scholar

[67] Li Q, Liu L, Miao Q, Jin B, Bai R. Polym Chem, 2014, 5: 2208-2213 CrossRef Google Scholar

[68] Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L. Energy Environ Sci, 2014, 7: 3135-3191 CrossRef Google Scholar

[69] Lin CX, Wang XQ, Li L, Liu FH, Zhang QG, Zhu AM, Liu QL. J Power Sources, 2017, 365: 282-292 CrossRef ADS Google Scholar

[70] Yang Y, Knauss DM. Macromolecules, 2015, 48: 4471-4480 CrossRef ADS Google Scholar

[71] Xu T, Wu D, Seo SJ, Woo JJ, Wu L, Moon SH. J Appl Polym Sci, 2012, 124: 3511-3519 CrossRef Google Scholar

[72] Li Y, Jackson AC, Beyer FL, Knauss DM. Macromolecules, 2014, 47: 6757-6767 CrossRef ADS Google Scholar

[73] Wu L, Xu T, Wu D, Zheng X. J Membr Sci, 2008, 310: 577-585 CrossRef Google Scholar

[74] Si K, Dong D, Wycisk R, Litt M. J Mater Chem, 2012, 22: 20907 CrossRef Google Scholar

[75] Zou G, Wu W, Cong C, Meng X, Zhao K, Zhou Q. RSC Adv, 2016, 6: 106237-106247 CrossRef Google Scholar

[76] Jung B, Kim B, Yang JM. J Membr Sci, 2004, 245: 61-69 CrossRef Google Scholar

[77] Pandey RP, Thakur AK, Shahi VK. J Membr Sci, 2014, 469: 478-487 CrossRef Google Scholar

[78] Yang CC, Li YJ, Chiu SJ, Lee KT, Chien WC, Huang CA. J Power Sources, 2008, 184: 95-98 CrossRef ADS Google Scholar

[79] Shi B, Li Y, Zhang H, Wu W, Ding R, Dang J, Wang J. J Membr Sci, 2016, 498: 242-253 CrossRef Google Scholar

[80] Matsumoto K, Fujigaya T, Yanagi H, Nakashima N. Adv Funct Mater, 2011, 21: 1089-1094 CrossRef Google Scholar

[81] Ye YS, Cheng MY, Xie XL, Rick J, Huang YJ, Chang FC, Hwang BJ. J Power Sources, 2013, 239: 424-432 CrossRef Google Scholar

[82] Merle G, Wessling M, Nijmeijer K. J Membr Sci, 2011, 377: 1-35 CrossRef Google Scholar

[83] Yan X, Zheng W, Ruan X, Pan Y, Wu X, He G. Chin J Chem Eng, 2016, 24: 558-571 CrossRef Google Scholar

[84] Zhang S, Wu C, Xu T, Gong M, Xu X. J Solid State Chem, 2005, 178: 2292-2300 CrossRef ADS Google Scholar

[85] Kickelbick G. Prog Polymer Sci, 2003, 28: 83-114 CrossRef Google Scholar

[86] Li Y, He G, Wang S, Yu S, Pan F, Wu H, Jiang Z. J Mater Chem A, 2013, 1: 10058-10077 CrossRef Google Scholar

[87] Wu Y, Wu C, Varcoe JR, Poynton SD, Xu T, Fu Y. J Power Sources, 2010, 195: 3069-3076 CrossRef ADS Google Scholar

[88] Luo J, Wu C, Wu Y, Xu T. J Membr Sci, 2010, 347: 240-249 CrossRef Google Scholar

[89] Li H, Wu J, Zhao C, Zhang G, Zhang Y, Shao K, Xu D, Lin H, Han M, Na H. Int J Hydrogen Energy, 2009, 34: 8622-8629 CrossRef Google Scholar

[90] Sun F, Wu C, Wu Y, Xu T. J Membr Sci, 2014, 450: 103-110 CrossRef Google Scholar

[91] Wu B, Ge L, Yu D, Hou L, Li Q, Yang Z, Xu T. J Mater Chem A, 2016, 4: 14545-14549 CrossRef Google Scholar

[92] Li Q, Liu L, Liang S, Dong Q, Jin B, Bai R. RSC Adv, 2013, 3: 13477-13485 CrossRef Google Scholar

[93] Ran J, Hu M, Yu D, He Y, Shehzad MA, Wu L, Xu T. J Membr Sci, 2016, 520: 630-638 CrossRef Google Scholar

[94] Xu Tw, Yang Wh, He Bl. Chin J Polym Sci, 2002, 20: 53–57. Google Scholar

[95] Huang RYM, Kim JJ. J Appl Polym Sci, 1984, 29: 4017-4027 CrossRef Google Scholar

[96] Wang C, Huang Y, Cong G. Polym J, 1995, 27: 173-178 CrossRef Google Scholar

[97] Kim B, Jung B. Macromol Rapid Commun, 2004, 25: 1263-1267 CrossRef Google Scholar

[98] Wu D, Wu L, Woo JJ, Yun SH, Seo SJ, Xu T, Moon SH. J Membr Sci, 2010, 348: 167-173 CrossRef Google Scholar

[99] Li C, Liu J, Guan R, Zhang P, Zhang Q. J Membr Sci, 2007, 287: 180-186 CrossRef Google Scholar

[100] Khodabakhshi AR, Madaeni SS, Xu TW, Wu L, Wu C, Li C, Na W, Zolanvari SA, Babayi A, Ghasemi J, Hosseini SM, Khaledi A. Sep Purif Tech, 2012, 90: 10-21 CrossRef Google Scholar

[101] Yun SH, Woo JJ, Seo SJ, Wu L, Wu D, Xu T, Moon SH. J Membr Sci, 2011, 367: 296-305 CrossRef Google Scholar

[102] Wu D, Fu R, Xu T, Wu L, Yang W. J Membr Sci, 2008, 310: 522-530 CrossRef Google Scholar

[103] Pan J, Ge L, Lin X, Wu L, Wu B, Xu T. J Membr Sci, 2014, 470: 479-485 CrossRef Google Scholar

[104] Takimoto N, Wu L, Ohira A, Takeoka Y, Rikukawa M. Polymer, 2009, 50: 534-540 CrossRef Google Scholar

[105] Zhang Z, Wu L, Xu T. J Membr Sci, 2011, 373: 160-166 CrossRef Google Scholar

[106] Yan X, Sun J, Gao L, Zheng W, Dai Y, Ruan X, He G. Int J Hydrogen Energy, 2018, 43: 301-310 CrossRef Google Scholar

[107] Kosmala B, Schauer J. J Appl Polym Sci, 2002, 85: 1118-1127 CrossRef Google Scholar

[108] Schauer J, Albrecht W, Weigel T, K?dela V, Pientka Z. J Appl Polym Sci, 2001, 81: 134-142 CrossRef Google Scholar

[109] Wu L, Zhou D, Wang H, Pan Q, Ran J, Xu T. Fuel Cells, 2015, 15: 189-195 CrossRef Google Scholar

[110] Jiang R, Kunz HR, Fenton JM. J Electrochem Soc, 2006, 153: A1554 CrossRef Google Scholar

[111] Cho CG, Jang HY, You YG, Li GH, An SG. High Perform Polym, 2016, 18: 579-591 CrossRef Google Scholar

[112] Debe MK. Nature, 2012, 486: 43-51 CrossRef PubMed ADS Google Scholar

[113] Rikukawa M, Sanui K. Prog Polym Sci, 2000, 25: 1463-1502 CrossRef Google Scholar

[114] Pan J, Chen C, Zhuang L, Lu J. Acc Chem Res, 2012, 45: 473-481 CrossRef PubMed Google Scholar

[115] Lu S, Pan J, Huang A, Zhuang L, Lu J. Proc Natl Acad Sci USA, 2008, 105: 20611-20614 CrossRef ADS Google Scholar

[116] Arges CG, Ramani V. Proc Natl Acad Sci USA, 2013, 110: 2490-2495 CrossRef PubMed ADS Google Scholar

[117] Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L. Energy Environ Sci, 2014, 7: 354-360 CrossRef Google Scholar

[118] Chen N, Long C, Li Y, Wang D, Zhu H. J Membr Sci, 2018, 552: 51-60 CrossRef Google Scholar

[119] Chen N, Long C, Li Y, Lu C, Zhu H. ACS Appl Mater Interfaces, 2018, 10: 15720-15732 CrossRef Google Scholar

[120] Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown NB, Guiver MD, Wu L, Xu T. Angew Chem Int Ed, 2016, 55: 11499-11502 CrossRef PubMed Google Scholar

[121] Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS. J Phys Chem C, 2008, 112: 3179-3182 CrossRef Google Scholar

[122] Macomber CS, Boncella JM, Pivovar BS, Rau JA. J Therm Anal Calorim, 2008, 93: 225-229 CrossRef Google Scholar

[123] Ye Y, Elabd YA. Macromolecules, 2011, 44: 8494-8503 CrossRef ADS Google Scholar

[124] Lin B, Dong H, Li Y, Si Z, Gu F, Yan F. Chem Mater, 2013, 25: 1858-1867 CrossRef Google Scholar

[125] Price SC, Williams KS, Beyer FL. ACS Macro Lett, 2014, 3: 160-165 CrossRef Google Scholar

[126] Hugar KM, Kostalik Iv HA, Coates GW. J Am Chem Soc, 2015, 137: 8730-8737 CrossRef PubMed Google Scholar

[127] Zha Y, Disabb-Miller ML, Johnson ZD, Hickner MA, Tew GN. J Am Chem Soc, 2012, 134: 4493-4496 CrossRef PubMed Google Scholar

[128] Gu S, Wang J, Kaspar RB, Fang Q, Zhang B, Bryan Coughlin E, Yan Y. Sci Rep, 2015, 5: 11668 CrossRef PubMed ADS Google Scholar

[129] Chen N, Zhu H, Chu Y, Li R, Liu Y, Wang F. Polym Chem, 2017, 8: 1381-1392 CrossRef Google Scholar

[130] Mohanty AD, Bae C. J Mater Chem A, 2014, 2: 17314-17320 CrossRef Google Scholar

[131] Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T. J Membr Sci, 2017, 522: 267-291 CrossRef Google Scholar

[132] Xia L, Yu L, Hu D, Chen GZ. Mater Chem Front, 2017, 1: 584-618 CrossRef Google Scholar

[133] He Y, Pan J, Wu L, Ge L, Xu T. J Membr Sci, 2015, 491: 45-52 CrossRef Google Scholar

[134] Khan MI, Wu L, Hossain MM, Pan J, Ran J, Mondal AN, Xu T. Membr Water Treat, 2015, 6: 365-378 CrossRef Google Scholar

[135] Ge L, Mondal AN, Liu X, Wu B, Yu D, Li Q, Miao J, Ge Q, Xu T. J Membr Sci, 2017, 536: 11-18 CrossRef Google Scholar

[136] Lin X, Shamsaei E, Kong B, Liu JZ, Xu T, Wang H. J Mater Chem A, 2015, 3: 24000-24007 CrossRef Google Scholar

[137] Lin X, Shamsaei E, Kong B, Liu JZ, Hu Y, Xu T, Wang H. J Membr Sci, 2016, 502: 76-83 CrossRef Google Scholar

[138] Miao J, Yao L, Yang Z, Pan J, Qian J, Xu T. Sep Purif Tech, 2015, 141: 307-313 CrossRef Google Scholar

[139] Miao J, Li X, Yang Z, Jiang C, Qian J, Xu T. J Membr Sci, 2016, 498: 201-207 CrossRef Google Scholar

[140] Cui M, Wu Y, Ran J, Xu T. Desalination Water Treatment, 2015, 54: 2627-2637 CrossRef Google Scholar

[141] Mondal AN, Dai C, Pan J, Zheng C, Hossain MM, Khan MI, Wu L, Xu T. ACS Appl Mater Interfaces, 2015, 7: 15944-15954 CrossRef Google Scholar

[142] Wu L, Zhao Y, Ge L, Yang Z, Jiang C, Xu T. Chem Eng Sci, 2015, 135: 526-531 CrossRef Google Scholar

[143] Liu Y, Pan Q, Wang Y, Zheng C, Wu L, Xu T. Sep Purif Tech, 2015, 156: 226-233 CrossRef Google Scholar

[144] Pan Q, Hossain MM, Yang Z, Wang Y, Wu L, Xu T. J Membr Sci, 2016, 515: 115-124 CrossRef Google Scholar

[145] Shahi VK, Thampy SK, Rangarajan R. Reactive Funct Polym, 2000, 46: 39-47 CrossRef Google Scholar

[146] Ge L, Liu X, Wang G, Wu B, Wu L, Bakangura E, Xu T. J Membr Sci, 2015, 475: 273-280 CrossRef Google Scholar

[147] Hou L, Pan J, Yu D, Wu B, Mondal AN, Li Q, Ge L, Xu T. J Membr Sci, 2017, 528: 243-250 CrossRef Google Scholar

[148] Khan MI, Mondal AN, Tong B, Jiang C, Emmanuel K, Yang Z, Wu L, Xu T. Desalination, 2016, 391: 61-68 CrossRef Google Scholar

[149] Wilhelm FG. Bipolar Membrane Electrodialysis. Twente: Twente University Press, 2001. Google Scholar

[150] Strathmann H, Krol JJ, Rapp HJ, Eigenberger G. J Membr Sci, 1997, 125: 123-142 CrossRef Google Scholar

[151] Lobyntseva E, Kallio T, Kontturi K. Electrochim Acta, 2006, 51: 1165-1171 CrossRef Google Scholar

[152] Xu T, Fu R, Yang W, Xue Y. J Membr Sci, 2006, 279: 282-290 CrossRef Google Scholar

[153] Pan J, Hou L, Wang Q, He Y, Wu L, Mondal AN, Xu T. Mater Chem Phys, 2017, 186: 484-491 CrossRef Google Scholar

[154] Chen G, Xu T, Liu J. J Appl Polym Sci, 2008, 109: 1447-1453 CrossRef Google Scholar

  • Figure 1

    Conventional strategy for different types of PPO-based AEMs using different tertiary amine reagents. 1a [24]: conventional type; 1b [22] and 1c [30]: comb-shaped; 1d [31]: multication side-chain type (color online).

  • Figure 2

    Some special reactions for QPPO starting from BPPO. ATRP for 2a [33]; click reaction for 2b [34]; Witting reaction for 2c [35].

  • Figure 3

    Cross-linked AEMs made from BPPO. Cross-linking via thiol-ene click chemistry to afford 3a [40], and free radical polymerization to form 3b (color online).

  • Figure 4

    Strategy for AEM cross-linking via disulfide bonds, which can be reduced and broken by dithiothreitol [43] (color online).

  • Figure 5

    Commonly encountered cationic head-groups for AEMs. 5a=imidazolium groups; 5b=pentamethylguanidinium groups; 5c=pyridinium groups; 5d=piperidinium groups; 5e=quinuclidinium; 5f=methylazepanium; 5g=pyridinium groups; 5h=tetrakis(dialkylamino)phosphonium groups; 5i=tris(2,4,6-trimethoxyphenyl) polysulfone-methylene quaternary phosphonium; 5j=exemplar metal containing cationic group, 5k=cobaltocenium (color online).

  • Figure 6

    AEMs based on imidazole (6a6c) [52], guanidine (6d) [53], 9-(2-((3-(triethoxysilyl)propyl)thio)ethyl)-9H-carbazole (6e) [54] and fullerene (6f) [55] (color online).

  • Figure 7

    PPO-based AEMs from Friedel-Crafts acylation. Chloroacetyl chloride used asacylating reagent for 7a [56]; three steps including condensation reaction, Friedel-Crafts reaction (using 4-fluorobenzoyl chloride as acylating reagent) and quaterisation was employed for PPO-AEM containing trifunctional ammonium moieties (7b) [57] (color online).

  • Figure 8

    PPO-based AEMs prepared from benzylic lithiation and subsequent quaterisation [60].

  • Figure 9

    PPO-based AEMs prepared from coupled reaction of 2-bromo-9,9-bis(6′-bromohexyl) fluorene and borylated compound containing halohydrocarbon [21,64] (color online).

  • Figure 10

    Copolymer AEMs using cationic PPO as hydrophilic part. Redistribution reaction, bromination and Menshutkin reaction were carried out for 10a [67]; Friedel-Crafts reaction, ketone reduction and Menshutkin reaction were employed for 10b [69].

  • Figure 11

    Copolymer AEMs using PPO as hydrophobic part. Diblock copolymer membranes 11 were obtained through substitution reaction, nitroxide-mediated polymerization and Menshutkin reaction in sequence [70].

  • Figure 12

    Two typical methods for fabricating composite membranes. (a) Physical blending method and (b) sol-gel method [86] (color online).

  • Figure 13

    The preparation procedures of BPPO-SiO2 hybrid membranes [88].

  • Figure 14

    The preparation process of (a) the multi-silicon copolymer poly(MA-co-γ-MPS), and (b) BPPO-based hybrid membranes [90] (color online).

  • Figure 15

    The schematic illustration of BPPO-MOF membrane preparation (ferrum, bromine, oxygen, nitrogen and carbon atoms are in purple, yellow, red, blue and black, respectively. Hydrogen atoms are almost omitted) [91] (color online).

  • Figure 16

    Synthesis of PIL(BF4)-MWCNTs, PPO-MIm and composite membranes [92] (color online).

  • Figure 17

    Schematic sulfonation of PPO by various sulfonating agent. The solvent can be chloroform or 1,2-dichloroethane (color online).

  • Figure 18

    Scanning electron micrographs for SPPO films. SPPO at a draw ratio of 6.55% (heat-treated and stretched SPPO) (a); original SPPO (b) [99].

  • Figure 19

    Schematic crosslinking of SPPO during heat treatment [98].

  • Figure 20

    Schematic cross-linking of BPPO during heat treatment and the sulfonation procedure [102] (color online).

  • Figure 21

    Schematic synthesis of a side-chain-type SPPO via etherification reaction of BPPO [105] (color online).

  • Figure 22

    Schematic synthesis of the long-side-chain SPPO via direct acylation reaction and substitution reaction [106] (color online).

  • Figure 23

    Physical observation of the casting solutions and their corresponding membranes, which are prepared from (a) Na+ form SPPO and the Na+ form SPPESK and (b) 100% protonated SPPO and the Na+ form SPPESK, respectively; (c) ionically acid-base interactions between the H+ form SPPO and the Na+ form SPPESK [109] (color online).

  • Figure 24

    Schematic synthetic of PPO-g-PSSA via atom transfer radical polymerization [111] (color online).

  • Figure 25

    1H NMR spectra (400 MHz, CD3OD, 298 K) of (a) NMImPPO (60 °C), (b) DMImPPO (60 °C), (c) TMImPPO (60 °C), (d) QPPO (60 °C), (e) NMImPPO (80 °C), (f) DMImPPO (80 °C), (g) TMImPPO (80 °C), and (h) QPPO (80 °C). The membranes were immersed in 1 M NaOD/D2O/CD3OD solution for increasing times [52] (color online).

  • Figure 26

    Schematic illustrations of the processes for (a) acid recovery and (b) alkaline recovery diffusion dialysis [131] (color online).

  • Figure 27

    Representative schematic illustration of a conventional electrodialysis stack [131] (color online).

  • Figure 28

    Representative schematic illustration of Membrane module for bipolar membrane electrodialysis with one repeat unit and typical membrane arrangements at the ends for limited electrode influences [149] (color online).

  • Table 1   Summary of the alkaline stabilities of PPO-based AEMs with different cations

    Cation

    Test condition

    Test method

    Stability

    Ref.

    1 M NaOH

    80 °C,100 h

    NMR

    Unstable

    [24]

    1 M NaOH

    80 °C,2000 h

    IEC & Conductivity

    Stable

    [22]

    1 M NaOH

    80 °C,8 d

    NMR

    Stable

    [63]

    1 M NaOD/D2O/CD3OD

    60 °C,1 d

    NMR

    Unstable

    [52]

    1 M NaOD/D2O/CD3OD

    60 °C,4 d

    NMR

    Unstable

    [52]

    1 M NaOD/D2O/CD3OD

    60 °C,7 d

    NMR

    Stable

    [52]

    1 M KOH

    25 °C,8 d

    Conductivity

    Stable

    [53]

    Silver oxide ion exchange reaction

    60 °C,672 h

    NMR

    Stable

    [130]

    Silver oxide ion exchange reaction

    60 °C,672 h

    NMR

    Unstable

    [130]

    Silver oxide ion exchange reaction

    60 °C,672 h

    NMR

    Unstable

    [130]

    Silver oxide ion exchange reaction

    60 °C,672 h

    NMR

    Unstable

    [130]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1