SCIENCE CHINA Chemistry, Volume 61, Issue 8: 882-891(2018) https://doi.org/10.1007/s11426-018-9300-5

Biothiol-specific fluorescent probes with aggregation-induced emission characteristics

More info
  • ReceivedApr 3, 2018
  • AcceptedJun 5, 2018
  • PublishedJul 18, 2018


Biothiols are important species in physiological processes such as regulating protein structures, redox homeostasis and cell signalling. Alternation in the biothiol levels is associated with various pathological processes, therefore non-invasive fluorescent probes with high specificity to biothiols are highly desirable research utilities. Meanwhile, fluorescent probes with aggregation-induced emission properties (AIEgens) possess unique photophysical properties that allow modulation of the sensing process through controlling the aggregation-disaggregation or the intramolecular rotational motions of the fluorophores. Herein we review the recent progress in the development of biothiol-specific AIEgens. In particular, the molecular design principles to target different types of biothiols and the corresponding sensing mechanisms are discussed, along with the potential of the future design and development of multi-functional bioprobes.

Funded by

Australian Research Council(DE170100058)

Rebecca L. Cooper Medical Research Foundation.


This work was supported by Australian Research Council (DE170100058) and Rebecca L. Cooper Medical Research Foundation.

Interest statement

The authors declare that they have no conflict of interest.


[1] Hwang C, Sinskey AJ, Lodish HF. Science, 1992, 257: 1496-1502 CrossRef ADS Google Scholar

[2] Schulz JB, Lindenau J, Seyfried J, Dichgans J. Eur J Biochem, 2000, 267: 4904-4911 CrossRef Google Scholar

[3] Wood ZA, Schröder E, Robin Harris J, Poole LB. Trends Biochem Sci, 2003, 28: 32-40 CrossRef Google Scholar

[4] Mohamed MM, Sloane BF. Nat Rev Cancer, 2006, 6: 764-775 CrossRef PubMed Google Scholar

[5] Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF. Nature, 2010, 468: 790-795 CrossRef PubMed ADS Google Scholar

[6] Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, Bankston LA. Trends Neurosci, 2002, 25: 474-480 CrossRef Google Scholar

[7] Chu PY, Liu MY. J Funct Foods, 2015, 18: 455-462 CrossRef Google Scholar

[8] Marino SM, Gladyshev VN. J Mol Biol, 2010, 404: 902-916 CrossRef PubMed Google Scholar

[9] Lin J, Lee IM, Song Y, Cook NR, Selhub J, Manson JAE, Buring JE, Zhang SM. Cancer Res, 2010, 70: 2397-2405 CrossRef PubMed Google Scholar

[10] Finkelstein JD, Martin JJ. Int J Biochem Cell Biol, 2000, 32: 385-389 CrossRef Google Scholar

[11] Nekrassova O. Talanta, 2003, 60: 1085-1095 CrossRef Google Scholar

[12] Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. J Nutrit, 2004, 134: 489-492 CrossRef PubMed Google Scholar

[13] Townsend DM, Tew KD, Tapiero H. Biomed Pharmacother, 2003, 57: 145-155 CrossRef Google Scholar

[14] Akerboom TP, Bilzer M, and Sies H. J Biol Chem, 1982, 257: 4248–4252. Google Scholar

[15] Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Clin Sci, 2011, 121: 459-488 CrossRef PubMed Google Scholar

[16] Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabó C. Proc Natl Acad Sci USA, 2009, 106: 21972-21977 CrossRef PubMed ADS Google Scholar

[17] Amarnath K. Talanta, 2003, 60: 1229-1238 CrossRef Google Scholar

[18] Chen W, Zhao Y, Seefeldt T, Guan X. J Pharmaceut Biomed Anal, 2008, 48: 1375-1380 CrossRef PubMed Google Scholar

[19] Guo XF, Wang H, Guo YH, Zhang ZX, Zhang HS. J Chromatogr A, 2009, 1216: 3874-3880 CrossRef PubMed Google Scholar

[20] Zinellu A, Sotgia S, Scanu B, Usai MF, Fois AG, Spada V, Deledda A, Deiana L, Pirina P, Carru C. Amino Acids, 2009, 37: 395-400 CrossRef PubMed Google Scholar

[21] Zhang X, Ren X, Xu QH, Loh KP, Chen ZK. Org Lett, 2009, 11: 1257-1260 CrossRef PubMed Google Scholar

[22] McMahon BK, Gunnlaugsson T. J Am Chem Soc, 2012, 134: 10725-10728 CrossRef PubMed Google Scholar

[23] Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z. Angew Chem Int Ed, 2009, 48: 4034-4037 CrossRef PubMed Google Scholar

[24] Lim CS, Masanta G, Kim HJ, Han JH, Kim HM, Cho BR. J Am Chem Soc, 2011, 133: 11132-11135 CrossRef PubMed Google Scholar

[25] Lee MH, Han JH, Kwon PS, Bhuniya S, Kim JY, Sessler JL, Kang C, Kim JS. J Am Chem Soc, 2012, 134: 1316-1322 CrossRef PubMed Google Scholar

[26] Wang H, Zhou G, Gai H, Chen X. Chem Commun, 2012, 48: 8341-8343 CrossRef PubMed Google Scholar

[27] Xiong X, Song F, Chen G, Sun W, Wang J, Gao P, Zhang Y, Qiao B, Li W, Sun S, Fan J, Peng X. Chem Eur J, 2013, 19: 6538-6545 CrossRef PubMed Google Scholar

[28] Niu LY, Guan YS, Chen YZ, Wu LZ, Tung CH, Yang QZ. J Am Chem Soc, 2012, 134: 18928-18931 CrossRef PubMed Google Scholar

[29] Long L, Lin W, Chen B, Gao W, Yuan L. Chem Commun, 2011, 47: 893-895 CrossRef PubMed Google Scholar

[30] Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, : 1740-1741 CrossRef Google Scholar

[31] Kumar M, Hong Y, Thorn DC, Ecroyd H, Carver JA. Anal Chem, 2017, 89: 9322-9329 CrossRef PubMed Google Scholar

[32] Shi H, Kwok RTK, Liu J, Xing B, Tang BZ, Liu B. J Am Chem Soc, 2012, 134: 17972-17981 CrossRef PubMed Google Scholar

[33] Lou X, Zhuang Y, Zuo X, Jia Y, Hong Y, Min X, Zhang Z, Xu X, Liu N, Xia F, Tang BZ. Anal Chem, 2015, 87: 6822-6827 CrossRef PubMed Google Scholar

[34] Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F. Angew Chem Int Ed, 2018, 57: 3123-3127 CrossRef PubMed Google Scholar

[35] Parrott EPJ, Tan NY, Hu R, Zeitler JA, Tang BZ, Pickwell-MacPherson E. Mater Horiz, 2014, 1: 251-258 CrossRef Google Scholar

[36] Hong Y, Lam JWY, Tang BZ. Chem Commun, 2009, 1: 4332 CrossRef PubMed Google Scholar

[37] Liu Y, Yu Y, Lam JWY, Hong Y, Faisal M, Yuan WZ, Tang BZ. Chem Eur J, 2010, 16: 8433-8438 CrossRef PubMed Google Scholar

[38] Chen MZ, Moily NS, Bridgford JL, Wood RJ, Radwan M, Smith TA, Song Z, Tang BZ, Tilley L, Xu X, Reid GE, Pouladi MA, Hong Y, Hatters DM. Nat Commun, 2017, 8: 474 CrossRef PubMed ADS Google Scholar

[39] Li X, Zhang X, Chi Z, Chao X, Zhou X, Zhang Y, Liu S, Xu J. Anal Methods, 2012, 4: 3338-3343 CrossRef Google Scholar

[40] Zhao N, Gong Q, Zhang RX, Yang J, Huang ZY, Li N, Tang BZ. J Mater Chem C, 2015, 3: 8397-8402 CrossRef Google Scholar

[41] Chen S, Hong Y, Liu J, Tseng NW, Liu Y, Zhao E, Yip Lam JW, Tang BZ. J Mater Chem B, 2014, 2: 3919-3923 CrossRef Google Scholar

[42] Lou X, Hong Y, Chen S, Leung CWT, Zhao N, Situ B, Lam JWY, Tang BZ. Sci Rep, 2014, 4: 4272 CrossRef PubMed ADS Google Scholar

[43] Mei J, Sun JZ, Qin A, Tang BZ. Dyes Pigments, 2017, 141: 366-378 CrossRef Google Scholar

[44] Lou X, Zhao Z, Hong Y, Dong C, Min X, Zhuang Y, Xu X, Jia Y, Xia F, Tang BZ. Nanoscale, 2014, 6: 14691-14696 CrossRef PubMed ADS Google Scholar

[45] Yan L, Kong Z, Shen W, Du W, Zhou Y, Qi Z. RSC Adv, 2016, 6: 5636-5640 CrossRef Google Scholar

[46] Yu Y, Li J, Chen S, Hong Y, Ng KM, Luo KQ, Tang BZ. ACS Appl Mater Interfaces, 2013, 5: 4613-4616 CrossRef PubMed Google Scholar

[47] Mei J, Tong J, Wang J, Qin A, Sun JZ, Tang BZ. J Mater Chem, 2012, 22: 17063-17070 CrossRef Google Scholar

[48] Mei J, Wang Y, Tong J, Wang J, Qin A, Sun JZ, Tang BZ. Chem Eur J, 2013, 19: 613-620 CrossRef PubMed Google Scholar

[49] Peng L, Zhou Z, Wei R, Li K, Song P, Tong A. Dyes Pigments, 2014, 108: 24-31 CrossRef Google Scholar

[50] Jiang G, Liu X, Chen Q, Zeng G, Wu Y, Dong X, Zhang G, Li Y, Fan X, Wang J. Sens Actuat B-Chem, 2017, 252: 712-716 CrossRef Google Scholar

[51] Liu H, Wang X, Xiang Y, Tong A. Anal Methods, 2015, 7: 5028-5033 CrossRef Google Scholar

[52] Li R, Yan L, Wang Z, Qi Z. J Mol Struct, 2017, 1136: 1-6 CrossRef ADS Google Scholar

[53] Zhou X, Guo D, Jiang Y, Gong D, Zhao X, Zhou L. Tetrahedron Lett, 2017, 58: 3214-3218 CrossRef Google Scholar

[54] Zhang R, Yuan Y, Liang J, Kwok RTK, Zhu Q, Feng G, Geng J, Tang BZ, Liu B. ACS Appl Mater Interfaces, 2014, 6: 14302-14310 CrossRef PubMed Google Scholar

[55] Yuan Y, Kwok RTK, Feng G, Liang J, Geng J, Tang BZ, Liu B. Chem Commun, 2014, 50: 295-297 CrossRef PubMed Google Scholar

[56] Chen M, Chen R, Shi Y, Wang J, Cheng Y, Li Y, Gao X, Yan Y, Sun JZ, Qin A, Kwok RTK, Lam JWY, Tang BZ. Adv Funct Mater, 2018, 28: 1704689 CrossRef Google Scholar

[57] Li H, Feng X, Guo Y, Chen D, Li R, Ren X, Jiang X, Dong Y, Wang B. Sci Rep, 2014, 4: 4366 CrossRef PubMed ADS Google Scholar

[58] Zhang W, Kang J, Li P, Wang H, Tang B. Anal Chem, 2015, 87: 8964-8969 CrossRef PubMed Google Scholar

[59] Cai Y, Li L, Wang Z, Sun JZ, Qin A, Tang BZ. Chem Commun, 2014, 50: 8892-8895 CrossRef PubMed Google Scholar

  • Figure 1

    Chemical reactions involved in the detection mechanism of biothiol-specific fluorescent probes (color online).

  • Figure 2

    (a) Strategy for assaying protein foldedness via access to buried Cys thiols utilising TPE-MI; (b) confocal microscopy images for TPE-MI staining of HeLa cells with ER Tracker counterstain; (c) unfolding of the proteome by heat shock as assessed by denaturation of Renilla luciferase and luciferase activity; (d) heat shock treatment of HeLa cells at 42 °C for 45 min and subsequent time course of recovery at 37 °C; (e) effect of overnight tunicamycin treatment on HeLa cells; (f) effects of hsp90 inhibitor novobiocin (800 μM for 6 h) and free radical generator, hydrogen peroxide (100 μM for 1 h) on HEK293 cells [38] (color online).

  • Figure 3

    Molecular structures of probes 2 and 3 (color online).

  • Figure 4

    Emission ratio changes of probe 4 (10 μM) upon addition of 1 mM different amino acids or GSH in pH buffer. Inset: solution of 10 μM 4 in blank buffer or 100 mM GSH, Cys and Hcy (left to right) under UV lamp; molecular structure of probe 4 [41] (color online).

  • Figure 5

    Molecular structures of probes 5, 6, and 7 (color online).

  • Figure 6

    Molecular structure of probe 8 (color online).

  • Figure 7

    Fluorescence intensity changes of probe 9 (5 μM) in the presence of a gradually varied concentration of Cys (0–15 μM) in HEPES buffer. Inset: solution of 9 in blank buffer and 15 μM Cys under UV lamp; molecular structure of probe 9 [45] (color online).

  • Figure 8

    (a) Molecular structure of probe 10; (b) inverted SDS-PAGE fluorescence image of 10 labeled proteins (BSA, Enolase, and Myoglobin, left to right) with various contents of Cys residue; (c) image of the same gel post-stained with Coomassie R-250 [46] (color online).

  • Figure 9

    Molecular structures of probe 11, 12 and 13 (color online).

  • Figure 10

    Molecular structures of probes 1418 (color online).

  • Figure 11

    (A) Molecular structures of probe 19 and 20; (B) confocal microscopy images of U87-MG (a, b) and MCF-7 (c, d) cells after incubation with 20 (a, c) and 19 (b, d). The nuclei were stained with propidium iodide [54,55] (color online).

  • Figure 12

    (a) H2S detecting mechanism of 21; (b) plot of PL intensity ratio versus the number of scan in a total time of 25 min. Inset: fluorescence of 21 before and after reacting with NaHS; (c) plot of PL intensity ratio versus NaHS concentration [56] (color online).

  • Figure 13

    (a) Molecular structure of 22; (b) fluorescence images of H2S: 22-loaded C. elegans, sensor for H2S under stimulation with SNP, and 22-loaded zebrafish stimulated with H2S. (c) Fluorescence and (d) absorbance responses of 10 mM TPE-NP to various analytes in aqueous solution: (1) control, (2) I, (3) Br, (4) Cl, (5) CO32−, (6) HCO3, (7) H2PO4, (8) HPO42−, (9) NO3, (10) VC, (11) Zn2+, (12) Mg2+, (13) K+, (14) Ca2+, (15) Ac, (16) S2O32−, (17) S2O42−, (18) S2O52−, (19) SO32−, (20) SO42−, (21) ButOOH, (22) ClO, (23) H2O2, (24) NO, (25) O1, (26) O2, (27) OH, (28) ONOO, (29) GSH, (30) Hcy, (31) S2−, (32) HS [58] (color online).

  • Figure 14

    The reduction reaction of 23 by H2S (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有