logo

SCIENCE CHINA Chemistry, Volume 61, Issue 11: 1359-1367(2018) https://doi.org/10.1007/s11426-018-9315-2

Noncovalent conformational locks in organic semiconductors

More info
  • ReceivedMay 10, 2018
  • AcceptedJun 20, 2018
  • PublishedSep 3, 2018

Abstract

Highly planar conformation is considered to be one of the most important properties for high performance organic semiconductors. Among all kinds strategies for designing highly performing materials, noncovalent conformational locks (NCLs) have been widely used to increase the planarity and rigidity for π-conjugated systems. This review summarizes π-conjugated small molecules and polymers by employing various NCLs for controlling molecular conformation in the past two years. The optoelectronic properties of the conjugated materials, together with their applications on organic field-effect transistors (OFETs) and organic photovoltaics (OPVs) are discussed. Besides, the outlook and challenges in this field are also presented. It is obvious that NCLs play an important role in the design and synthesis of high-performance organic semiconductors.


Funded by

the National Natural Science Foundation of China(21774130,21574135)

Beijing Municipal Natural Science Foundation(2162043)

the Key Research Program of Frontier Science

Chinese Academy of Sciences(QYZDB-SSW-JSC046)

Key Research Program of the Chinese Academy of Sciences(XDPB08-2)

One Hundred Talents Program of Chinese Academy of Sciences

and University of Chinese Academy of Sciences.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21774130, 21574135), Beijing Municipal Natural Science Foundation (2162043), the Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDB-SSW-JSC046), Key Research Program of the Chinese Academy of Sciences (XDPB08-2), One Hundred Talents Program of Chinese Academy of Sciences, and University of Chinese Academy of Sciences.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174-179 CrossRef ADS Google Scholar

[2] Lin H, Chen S, Li Z, Lai JYL, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Adv Mater, 2015, 27: 7299-7304 CrossRef PubMed Google Scholar

[3] Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Nat Photon, 2009, 3: 297-302 CrossRef ADS Google Scholar

[4] Facchetti A. Mater Today, 2013, 16: 123-132 CrossRef Google Scholar

[5] Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571-582 CrossRef Google Scholar

[6] Xue X, Liu T, Meng X, Sun X, Huo L, Ma W, Sun Y. Sci China Chem, 2017, 60: 243-250 CrossRef Google Scholar

[7] Zhang H, Liu Y, Sun Y, Li M, Ni W, Zhang Q, Wan X, Chen Y. Sci China Chem, 2017, 60: 366-369 CrossRef Google Scholar

[8] Zhu C, Fang L. Macromol Rapid Commun, 2017, 39: 1700241 CrossRef PubMed Google Scholar

[9] Tsuda A, Osuka A. Science, 2001, 293: 79-82 CrossRef PubMed Google Scholar

[10] Samiullah M, Moghe D, Scherf U, Guha S. Phys Rev B, 2010, 82: 205211 CrossRef ADS Google Scholar

[11] Briseno AL, Mannsfeld SCB, Shamberger PJ, Ohuchi FS, Bao Z, Jenekhe SA, Xia Y. Chem Mater, 2008, 20: 4712-4719 CrossRef Google Scholar

[12] McCullough RD, Lowe RD, Jayaraman M, Anderson DL. J Org Chem, 1993, 58: 904-912 CrossRef Google Scholar

[13] Qin R, Li W, Li C, Du C, Veit C, Schleiermacher HF, Andersson M, Bo Z, Liu Z, Inganäs O, Wuerfel U, Zhang F. J Am Chem Soc, 2009, 131: 14612-14613 CrossRef PubMed Google Scholar

[14] Huang H, Zhou N, Ortiz RP, Chen Z, Loser S, Zhang S, Guo X, Casado J, López Navarrete JT, Yu X, Facchetti A, Marks TJ. Adv Funct Mater, 2014, 24: 2782-2793 CrossRef Google Scholar

[15] Roncali J. Macromol Rapid Commun, 2007, 28: 1761-1775 CrossRef Google Scholar

[16] Usta H, Lu G, Facchetti A, Marks TJ. J Am Chem Soc, 2006, 128: 9034-9035 CrossRef PubMed Google Scholar

[17] Usta H, Risko C, Wang Z, Huang H, Deliomeroglu MK, Zhukhovitskiy A, Facchetti A, Marks TJ. J Am Chem Soc, 2009, 131: 5586-5608 CrossRef PubMed Google Scholar

[18] Huang H, Chen Z, Ponce Ortiz R, Newman C, Usta H, Lou S, Youn J, Noh YY, Baeg KJ, Chen LX, Facchetti A, Marks TJ, Marks T. J Am Chem Soc, 2012, 134: 10966-10973 CrossRef PubMed Google Scholar

[19] Jackson NE, Savoie BM, Kohlstedt KL, Olvera de la Cruz M, Schatz GC, Chen LX, Ratner MA. J Am Chem Soc, 2013, 135: 10475-10483 CrossRef PubMed Google Scholar

[20] Hayashi K, Ogawa S, Sano S, Shiro M, Yamaguchi K, Sei Y, Nagao Y. Chem Pharm Bull, 2008, 56: 802-806 CrossRef Google Scholar

[21] Sakamoto Y, Komatsu S, Suzuki T. J Am Chem Soc, 2001, 123: 4643-4644 CrossRef Google Scholar

[22] Hergué N, Leriche P, Blanchard P, Allain M, Gallego-Planas N, Frère P, Roncali J. New J Chem, 2008, 32: 932 CrossRef Google Scholar

[23] Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291-10318 CrossRef PubMed Google Scholar

[24] Mishra A, Bäuerle P. Angew Chem Int Ed, 2012, 51: 2020-2067 CrossRef PubMed Google Scholar

[25] Sirringhaus H. Adv Mater, 2014, 26: 1319-1335 CrossRef PubMed Google Scholar

[26] Ni W, Wan X, Li M, Wang Y, Chen Y. Chem Commun, 2015, 51: 4936-4950 CrossRef PubMed Google Scholar

[27] Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356-3359 CrossRef PubMed Google Scholar

[28] Zhang Z, Li M, Liu Y, Zhang J, Feng S, Xu X, Song J, Bo Z. J Mater Chem A, 2017, 5: 7776-7783 CrossRef Google Scholar

[29] Li S, Zhan L, Liu F, Ren J, Shi M, Li CZ, Russell TP, Chen H. Adv Mater, 2018, 30: 1705208 CrossRef PubMed Google Scholar

[30] Yu S, Chen Y, Yang L, Ye P, Wu J, Yu J, Zhang S, Gao Y, Huang H. J Mater Chem A, 2017, 5: 21674-21678 CrossRef Google Scholar

[31] Ye P, Chen Y, Wu J, Wu X, Yu S, Xing W, Liu Q, Jia X, Peng A, Huang H. J Mater Chem C, 2017, 5: 12591-12596 CrossRef Google Scholar

[32] Yang L, Gu W, Yang Y, Hong L, Zhang X, Xiao Y, Wu X, Peng A, Huang H. Small Methods, 2018, 2: 1700330 CrossRef Google Scholar

[33] Qiu Z, Xu X, Zhang S, Wang P, Wang Y, Pei Y, Peng Q, Liu Y. Dyes Pigments, 2017, 147: 505-513 CrossRef Google Scholar

[34] Jo JW, Jung JW, Wang HW, Kim P, Russell TP, Jo WH. Chem Mater, 2014, 26: 4214-4220 CrossRef Google Scholar

[35] Zhang W, Shi K, Huang J, Gao D, Mao Z, Li D, Yu G. Macromolecules, 2016, 49: 2582-2591 CrossRef ADS Google Scholar

[36] Yum S, An TK, Wang X, Lee W, Uddin MA, Kim YJ, Nguyen TL, Xu S, Hwang S, Park CE, Woo HY. Chem Mater, 2014, 26: 2147-2154 CrossRef Google Scholar

[37] Lei T, Xia X, Wang JY, Liu CJ, Pei J. J Am Chem Soc, 2014, 136: 2135-2141 CrossRef PubMed Google Scholar

[38] Zhang W, Mao Z, Chen Z, Huang J, Wei C, Gao D, Lin Z, Li H, Wang L, Yu G. Polym Chem, 2017, 8: 879-889 CrossRef Google Scholar

[39] Zhang W, Mao Z, Huang J, Gao D, Yu G. Macromolecules, 2016, 49: 6401-6410 CrossRef ADS Google Scholar

[40] Lei T, Cao Y, Fan Y, Liu CJ, Yuan SC, Pei J. J Am Chem Soc, 2011, 133: 6099-6101 CrossRef PubMed Google Scholar

[41] Wang E, Mammo W, Andersson MR. Adv Mater, 2014, 26: 1801-1826 CrossRef PubMed Google Scholar

[42] Yang J, Zhao Z, Geng H, Cheng C, Chen J, Sun Y, Shi L, Yi Y, Shuai Z, Guo Y, Wang S, Liu Y. Adv Mater, 2017, 29: 1702115 CrossRef PubMed Google Scholar

[43] Gao Y, Deng Y, Tian H, Zhang J, Yan D, Geng Y, Wang F. Adv Mater, 2017, 29: 1606217 CrossRef PubMed Google Scholar

[44] Vegiraju S, Chang BC, Priyanka P, Huang DY, Wu KY, Li LH, Chang WC, Lai YY, Hong SH, Yu BC, Wang CL, Chang WJ, Liu CL, Chen MC, Facchetti A. Adv Mater, 2017, 29: 1702414 CrossRef PubMed Google Scholar

[45] Dong T, Lv L, Feng L, Xia Y, Deng W, Ye P, Yang B, Ding S, Facchetti A, Dong H, Huang H. Adv Mater, 2017, 29: 1606025 CrossRef PubMed Google Scholar

[46] Park GE, Choi S, Shin J, Cho MJ, Choi DH. Org Electron, 2016, 34: 157-163 CrossRef Google Scholar

[47] Zhou Y, Li M, Guo Y, Lu H, Song J, Bo Z, Wang H. ACS Appl Mater Interfaces, 2016, 8: 31348-31358 CrossRef Google Scholar

[48] Shi S, Liao Q, Tang Y, Guo H, Zhou X, Wang Y, Yang T, Liang Y, Cheng X, Liu F, Guo X. Adv Mater, 2016, 28: 9969-9977 CrossRef PubMed Google Scholar

[49] Guo X, Kim FS, Jenekhe SA, Watson MD. J Am Chem Soc, 2009, 131: 7206-7207 CrossRef PubMed Google Scholar

[50] Guo X, Quinn J, Chen Z, Usta H, Zheng Y, Xia Y, Hennek JW, Ortiz RP, Marks TJ, Facchetti A. J Am Chem Soc, 2013, 135: 1986-1996 CrossRef PubMed Google Scholar

[51] Huang J, Tang Y, Gao K, Liu F, Guo H, Russell TP, Yang T, Liang Y, Cheng X, Guo X. Macromolecules, 2016, 50: 137-150 CrossRef ADS Google Scholar

[52] Li Y, Lee TH, Park SY, Uddin MA, Kim T, Hwang S, Kim JY, Woo HY. Polym Chem, 2016, 7: 4638-4646 CrossRef Google Scholar

[53] Li Y, Lee TH, Kim J, Park SY, Song S, Hwang S, Kim JY, Woo HY. J Photopol Sci Technol, 2016, 29: 553-559 CrossRef Google Scholar

[54] Jeon SJ, Nam SJ, Han YW, Lee TH, Moon DK. Polym Chem, 2017, 8: 2979-2989 CrossRef Google Scholar

[55] Lee J, Ko H, Song E, Kim HG, Cho K. ACS Appl Mater Interfaces, 2015, 7: 21159-21169 CrossRef Google Scholar

[56] Kini GP, Hoang QV, Song CE, Lee SK, Shin WS, So WW, Uddin MA, Woo HY, Lee JC. Polym Chem, 2017, 8: 3622-3631 CrossRef Google Scholar

[57] Lv L, Wang X, Dong T, Wang X, Wu X, Yang L, Huang H. Mater Chem Front, 2017, 1: 1317-1323 CrossRef Google Scholar

[58] Rosenfield RE, Parthasarathy R, Dunitz JD. J Am Chem Soc, 1977, 99: 4860-4862 CrossRef Google Scholar

[59] Pomerantz M, Cheng Y. Tetrahedron Lett, 1999, 40: 3317-3320 CrossRef Google Scholar

[60] Cheng Y, Qi Y, Tang Y, Zheng C, Wan Y, Huang W, Chen R. J Phys Chem Lett, 2016, 7: 3609-3615 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1