logo

SCIENCE CHINA Chemistry, Volume 61, Issue 9: 1047-1061(2018) https://doi.org/10.1007/s11426-018-9325-7

Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting diodes

More info
  • ReceivedMay 23, 2018
  • AcceptedJul 9, 2018
  • PublishedAug 13, 2018

Abstract

Metal halide perovskite nanomaterials emerged as attractive emitting materials for light-emitting diodes (LEDs) devices due to their high photoluminescence quantum yield (PLQY), narrow bandwidth, high charge-carrier mobility, bandgap tunability, and facile synthesis. In the past few years, it has been witnessed an unprecedented advance in the field of metal halide perovskite nanomaterials based LEDs (PeLEDs) with a rapid external quantum efficiency (EQE) increase from 0.1% to 14.36%. From the viewpoint of material chemistry, the chemical regulation of metal halide perovskite nanomaterials made a great contribution to the efficiency improvement of PeLEDs. In this review, we categorize the strategies of chemical regulation as A-site cation engineering, B-site ion doping, X-site ion exchange, dimensional confinement, ligand exchange, surface passivation and interface optimization of transport layers for improving the EQEs of PeLEDs. We also show the potentials of chemical regulation strategies to enhance the stability of PeLEDs. Finally, we present insight toward future research directions and an outlook to further improve EQEs and stabilities of PeLEDs aiming to practical applications.


Funded by

the National Natural Science Foundation of China(51571184,21501165)

and the Defense Industrial Technology Development Program(JCKY2016208B012)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51571184, 21501165), and the Defense Industrial Technology Development Program (JCKY2016208B012). H.B. Yao thanks the support by “the Recruitment Program of Thousand Youth Talents”.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Cho H, Jeong SH, Park MH, Kim YH, Wolf C, Lee CL, Heo JH, Sadhanala A, Myoung NS, Yoo S, Im SH, Friend RH, Lee TW. Science, 2015, 350: 1222-1225 CrossRef PubMed ADS Google Scholar

[2] Yuan M, Quan LN, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard EM, Kanjanaboos P, Lu Z, Kim DH, Sargent EH. Nat Nanotech, 2016, 11: 872-877 CrossRef PubMed ADS Google Scholar

[3] Xiao Z, Kerner RA, Zhao L, Tran NL, Lee KM, Koh TW, Scholes GD, Rand BP. Nat Photon, 2017, 11: 108-115 CrossRef ADS Google Scholar

[4] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend RH, Wang J, Huang W. Nat Photon, 2016, 10: 699-704 CrossRef ADS Google Scholar

[5] Park MH, Jeong SH, Seo HK, Wolf C, Kim YH, Kim H, Byun J, Kim JS, Cho H, Lee TW. Nano Energy, 2017, 42: 157-165 CrossRef Google Scholar

[6] Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J. Nat Commun, 2018, 9: 570 CrossRef PubMed ADS Google Scholar

[7] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nano Lett, 2015, 15: 3692-3696 CrossRef PubMed ADS Google Scholar

[8] Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Adv Mater, 2015, 27: 7162-7167 CrossRef PubMed Google Scholar

[9] Wang KH, Wu L, Li L, Yao HB, Qian HS, Yu SH. Angew Chem Int Ed, 2016, 55: 8328-8332 CrossRef PubMed Google Scholar

[10] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ, Kovalenko MV. Nano Lett, 2015, 15: 5635-5640 CrossRef PubMed ADS Google Scholar

[11] Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH. Nat Nanotech, 2014, 9: 687-692 CrossRef PubMed ADS Google Scholar

[12] Wang KH, Yang JN, Ni QK, Yao HB, Yu SH. Langmuir, 2018, 34: 595-602 CrossRef PubMed Google Scholar

[13] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. Adv Funct Mater, 2016, 26: 2435-2445 CrossRef Google Scholar

[14] Schmidt LC, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink HJ, Galian RE, Pérez-Prieto J. J Am Chem Soc, 2014, 136: 850-853 CrossRef PubMed Google Scholar

[15] Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Nano Lett, 2014, 14: 5995-6001 CrossRef PubMed ADS Google Scholar

[16] Sutherland BR, Hoogland S, Adachi MM, Wong CTO, Sargent EH. ACS Nano, 2014, 8: 10947-10952 CrossRef PubMed Google Scholar

[17] Zhu BS, He Z, Yao JS, Chen C, Wang KH, Yao HB, Liu JW, Yu SH. Adv Opt Mater, 2018, 6: 1701029 CrossRef Google Scholar

[18] Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang YM, Wei M, Sutherland BR, Sargent EH, You J. Nat Commun, 2017, 8: 15640 CrossRef PubMed ADS Google Scholar

[19] Cho H, Kim JS, Wolf C, Kim YH, Yun HJ, Jeong SH, Sadhanala A, Venugopalan V, Choi JW, Lee CL, Friend RH, Lee TW. ACS Nano, 2018, 12: 2883-2892 CrossRef Google Scholar

[20] Shi Y, Xi J, Lei T, Yuan F, Dai J, Ran C, Dong H, Jiao B, Hou X, Wu Z. ACS Appl Mater Interfaces, 2018, 10: 9849-9857 CrossRef Google Scholar

[21] Yao JS, Ge J, Han BN, Wang KH, Yao HB, Yu HL, Li JH, Zhu BS, Song JZ, Chen C, Zhang Q, Zeng HB, Luo Y, Yu SH. J Am Chem Soc, 2018, 140: 3626-3634 CrossRef PubMed Google Scholar

[22] van der Stam W, Geuchies JJ, Altantzis T, van den Bos KHW, Meeldijk JD, Van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C. J Am Chem Soc, 2017, 139: 4087-4097 CrossRef PubMed Google Scholar

[23] Liu W, Lin Q, Li H, Wu K, Robel I, Pietryga JM, Klimov VI. J Am Chem Soc, 2016, 138: 14954-14961 CrossRef PubMed Google Scholar

[24] Begum R, Parida MR, Abdelhady AL, Murali B, Alyami NM, Ahmed GH, Hedhili MN, Bakr OM, Mohammed OF. J Am Chem Soc, 2017, 139: 731-737 CrossRef PubMed Google Scholar

[25] Li G, Rivarola FWR, Davis NJLK, Bai S, Jellicoe TC, de la Peña F, Hou S, Ducati C, Gao F, Friend RH, Greenham NC, Tan ZK. Adv Mater, 2016, 28: 3528-3534 CrossRef PubMed Google Scholar

[26] Kim HP, Kim J, Kim BS, Kim HM, Kim J, Yusoff ARM, Jang J, Nazeeruddin MK. Adv Opt Mater, 2017, 5: 1600920 CrossRef Google Scholar

[27] Wei M, Sun W, Liu Y, Liu Z, Xiao L, Bian Z, Chen Z. Phys Status Solidi A, 2016, 213: 2727-2732 CrossRef ADS Google Scholar

[28] Tian Y, Zhou C, Worku M, Wang X, Ling Y, Gao H, Zhou Y, Miao Y, Guan J, Ma B. Adv Mater, 2018, 30: 1707093 CrossRef PubMed Google Scholar

[29] Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend RH, Yang H, Lee TW. Adv Mater, 2016, 28: 7515-7520 CrossRef PubMed Google Scholar

[30] Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W. Adv Mater, 2017, 29: 1606600 CrossRef PubMed Google Scholar

[31] Pan J, Quan LN, Zhao Y, Peng W, Murali B, Sarmah SP, Yuan M, Sinatra L, Alyami NM, Liu J, Yassitepe E, Yang Z, Voznyy O, Comin R, Hedhili MN, Mohammed OF, Lu ZH, Kim DH, Sargent EH, Bakr OM. Adv Mater, 2016, 28: 8718-8725 CrossRef PubMed Google Scholar

[32] Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry AM, Hedhili MN, Emwas AH, Mohammed OF, Ning Z, Bakr OM. J Am Chem Soc, 2018, 140: 562-565 CrossRef PubMed Google Scholar

[33] Koscher BA, Swabeck JK, Bronstein ND, Alivisatos AP. J Am Chem Soc, 2017, 139: 6566-6569 CrossRef PubMed Google Scholar

[34] Lee S, Park JH, Lee BR, Jung ED, Yu JC, Di Nuzzo D, Friend RH, Song MH. J Phys Chem Lett, 2017, 8: 1784-1792 CrossRef PubMed Google Scholar

[35] de Quilettes DW, Koch S, Burke S, Paranji RK, Shropshire AJ, Ziffer ME, Ginger DS. ACS Energy Lett, 2016, 1: 438-444 CrossRef Google Scholar

[36] Shan Q, Li J, Song J, Zou Y, Xu L, Xue J, Dong Y, Huo C, Chen J, Han B, Zeng H. J Mater Chem C, 2017, 5: 4565-4570 CrossRef Google Scholar

[37] Yan F, Xing J, Xing G, Quan L, Tan ST, Zhao J, Su R, Zhang L, Chen S, Zhao Y, Huan A, Sargent EH, Xiong Q, Demir HV. Nano Lett, 2018, 18: 3157-3164 CrossRef PubMed ADS arXiv Google Scholar

[38] Zhang X, Sun C, Zhang Y, Wu H, Ji C, Chuai Y, Wang P, Wen S, Zhang C, Yu WW. J Phys Chem Lett, 2016, 7: 4602-4610 CrossRef PubMed Google Scholar

[39] He H, Tang B, Ma Y. Nanotechnology, 2018, 29: 055601 CrossRef PubMed ADS Google Scholar

[40] Bekenstein Y, Koscher BA, Eaton SW, Yang P, Alivisatos AP. J Am Chem Soc, 2015, 137: 16008-16011 CrossRef PubMed Google Scholar

[41] Swarnkar A, Chulliyil R, Ravi VK, Irfanullah M, Chowdhury A, Nag A. Angew Chem Int Ed, 2015, 54: 15424-15428 CrossRef PubMed Google Scholar

[42] Veldhuis SA, Boix PP, Yantara N, Li M, Sum TC, Mathews N, Mhaisalkar SG. Adv Mater, 2016, 28: 6804-6834 CrossRef PubMed Google Scholar

[43] Kim YH, Cho H, Lee TW. Proc Natl Acad Sci USA, 2016, 113: 11694-11702 CrossRef PubMed ADS Google Scholar

[44] Ling Y, Yuan Z, Tian Y, Wang X, Wang JC, Xin Y, Hanson K, Ma B, Gao H. Adv Mater, 2016, 28: 305-311 CrossRef PubMed Google Scholar

[45] Vybornyi O, Yakunin S, Kovalenko MV. Nanoscale, 2016, 8: 6278-6283 CrossRef PubMed ADS Google Scholar

[46] Zhang D, Eaton SW, Yu Y, Dou L, Yang P. J Am Chem Soc, 2015, 137: 9230-9233 CrossRef PubMed Google Scholar

[47] Zhang D, Yu Y, Bekenstein Y, Wong AB, Alivisatos AP, Yang P. J Am Chem Soc, 2016, 138: 13155-13158 CrossRef PubMed Google Scholar

[48] Protesescu L, Yakunin S, Bodnarchuk MI, Bertolotti F, Masciocchi N, Guagliardi A, Kovalenko MV. J Am Chem Soc, 2016, 138: 14202-14205 CrossRef PubMed Google Scholar

[49] Fu X, Zhang C, Peng Z, Xia Y, Zhang J, Luo W, Zhan R, Li H, Wang YH, Zhang D. J Mater Chem C, 2018, 6: 1701-1708 CrossRef Google Scholar

[50] Xing J, Yan F, Zhao Y, Chen S, Yu H, Zhang Q, Zeng R, Demir HV, Sun X, Huan A, Xiong Q. ACS Nano, 2016, 10: 6623-6630 CrossRef Google Scholar

[51] Zhang F, Zhong H, Chen C, Wu X, Hu X, Huang H, Han J, Zou B, Dong Y. ACS Nano, 2015, 9: 4533-4542 CrossRef Google Scholar

[52] Sun S, Yuan D, Xu Y, Wang A, Deng Z. ACS Nano, 2016, 10: 3648-3657 CrossRef Google Scholar

[53] Zhang W, Eperon GE, Snaith HJ. Nat Energy, 2016, 1: 16048 CrossRef ADS Google Scholar

[54] Yu JC, Kim DB, Jung ED, Lee BR, Song MH. Nanoscale, 2016, 8: 7036-7042 CrossRef PubMed ADS Google Scholar

[55] Jeong B, Han H, Choi YJ, Cho SH, Kim EH, Lee SW, Kim JS, Park C, Kim D, Park C. Adv Funct Mater, 2018, 28: 1706401 CrossRef Google Scholar

[56] Ling Y, Tian Y, Wang X, Wang JC, Knox JM, Perez-Orive F, Du Y, Tan L, Hanson K, Ma B, Gao H. Adv Mater, 2016, 28: 8983-8989 CrossRef PubMed Google Scholar

[57] Chiba T, Hoshi K, Pu YJ, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J. ACS Appl Mater Interfaces, 2017, 9: 18054-18060 CrossRef Google Scholar

[58] Gangishetty MK, Hou S, Quan Q, Congreve DN. Adv Mater, 2018, 30: 1706226 CrossRef PubMed Google Scholar

[59] Liang D, Peng Y, Fu Y, Shearer MJ, Zhang J, Zhai J, Zhang Y, Hamers RJ, Andrew TL, Jin S. ACS Nano, 2016, 10: 6897-6904 CrossRef Google Scholar

[60] Swarnkar A, Mir WJ, Nag A. ACS Energy Lett, 2018, 3: 286-289 CrossRef Google Scholar

[61] Wang HC, Bao Z, Tsai HY, Tang AC, Liu RS. Small, 2018, 14: 1702433 CrossRef PubMed Google Scholar

[62] Akkerman QA, Meggiolaro D, Dang Z, De Angelis F, Manna L. ACS Energy Lett, 2017, 2: 2183-2186 CrossRef PubMed Google Scholar

[63] Das Adhikari S, Dutta SK, Dutta A, Guria AK, Pradhan N. Angew Chem Int Ed, 2017, 56: 8746-8750 CrossRef PubMed Google Scholar

[64] Huang G, Wang C, Xu S, Zong S, Lu J, Wang Z, Lu C, Cui Y. Adv Mater, 2017, 29: 1700095 CrossRef PubMed Google Scholar

[65] Liu H, Wu Z, Shao J, Yao D, Gao H, Liu Y, Yu W, Zhang H, Yang B. ACS Nano, 2017, 11: 2239-2247 CrossRef Google Scholar

[66] Zou S, Liu Y, Li J, Liu C, Feng R, Jiang F, Li Y, Song J, Zeng H, Hong M, Chen X. J Am Chem Soc, 2017, 139: 11443-11450 CrossRef PubMed Google Scholar

[67] Liu F, Ding C, Zhang Y, Ripolles TS, Kamisaka T, Toyoda T, Hayase S, Minemoto T, Yoshino K, Dai S, Yanagida M, Noguchi H, Shen Q. J Am Chem Soc, 2017, 139: 16708-16719 CrossRef PubMed Google Scholar

[68] Zhang X, Liu H, Wang W, Zhang J, Xu B, Karen KL, Zheng Y, Liu S, Chen S, Wang K, Sun XW. Adv Mater, 2017, 29: 1606405 CrossRef PubMed Google Scholar

[69] Rehman W, McMeekin DP, Patel JB, Milot RL, Johnston MB, Snaith HJ, Herz LM. Energy Environ Sci, 2017, 10: 361-369 CrossRef Google Scholar

[70] Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354: 206-209 CrossRef PubMed ADS Google Scholar

[71] Yantara N, Bhaumik S, Yan F, Sabba D, Dewi HA, Mathews N, Boix PP, Demir HV, Mhaisalkar S. J Phys Chem Lett, 2015, 6: 4360-4364 CrossRef PubMed Google Scholar

[72] Akkerman QA, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L. J Am Chem Soc, 2015, 137: 10276-10281 CrossRef PubMed Google Scholar

[73] Sutherland BR, Sargent EH. Nat Photon, 2016, 10: 295-302 CrossRef ADS Google Scholar

[74] Vashishtha P, Halpert JE. Chem Mater, 2017, 29: 5965-5973 CrossRef Google Scholar

[75] Gauthron K, Lauret JS, Doyennette L, Lanty G, Al Choueiry A, Zhang SJ, Brehier A, Largeau L, Mauguin O, Bloch J, Deleporte E. Opt Express, 2010, 18: 5912-5919 CrossRef ADS arXiv Google Scholar

[76] Chen Z, Zhang C, Jiang XF, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao YJ, Su S, Yip HL, Cao Y. Adv Mater, 2017, 29: 1603157 CrossRef PubMed Google Scholar

[77] Li J, Xu L, Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H. Adv Mater, 2017, 29: 1603885 CrossRef PubMed Google Scholar

[78] Lu C, Li H, Kolodziejski K, Dun C, Huang W, Carroll D, Geyer SM. Nano Res, 2018, 11: 762-768 CrossRef Google Scholar

[79] Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy WCH, Rogach AL. Nano Lett, 2016, 16: 1415-1420 CrossRef PubMed ADS Google Scholar

[80] Wang J, Wang N, Jin Y, Si J, Tan ZK, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai ML, Friend RH, Huang W. Adv Mater, 2015, 27: 2311-2316 CrossRef PubMed Google Scholar

[81] Wang Z, Luo Z, Zhao C, Guo Q, Wang Y, Wang F, Bian X, Alsaedi A, Hayat T, Tan Z. J Phys Chem C, 2017, 121: 28132-28138 CrossRef Google Scholar

[82] Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J, Jin Y. ACS Nano, 2017, 11: 11100-11107 CrossRef Google Scholar

[83] Li G, Tan ZK, Di D, Lai ML, Jiang L, Lim JHW, Friend RH, Greenham NC. Nano Lett, 2015, 15: 2640-2644 CrossRef PubMed ADS Google Scholar

[84] Ji W, Liu S, Zhang H, Wang R, Xie W, Zhang H. ACS Photonics, 2017, 4: 1271-1278 CrossRef Google Scholar

[85] Yuan Y, Huang J. Acc Chem Res, 2016, 49: 286-293 CrossRef PubMed Google Scholar

[86] Back H, Kim G, Kim J, Kong J, Kim TK, Kang H, Kim H, Lee J, Lee S, Lee K. Energy Environ Sci, 2016, 9: 1258-1263 CrossRef Google Scholar

[87] Carrillo J, Guerrero A, Rahimnejad S, Almora O, Zarazua I, Mas-Marza E, Bisquert J, Garcia-Belmonte G. Adv Energy Mater, 2016, 6: 1502246 CrossRef Google Scholar

[88] Ahn N, Kwak K, Jang MS, Yoon H, Lee BY, Lee JK, Pikhitsa PV, Byun J, Choi M. Nat Commun, 2016, 7: 13422 CrossRef PubMed ADS arXiv Google Scholar

[89] Li J, Bade SGR, Shan X, Yu Z. Adv Mater, 2015, 27: 5196-5202 CrossRef PubMed Google Scholar

[90] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ Sci, 2016, 9: 1752-1759 CrossRef Google Scholar

[91] Azpiroz JM, Mosconi E, Bisquert J, De Angelis F. Energy Environ Sci, 2015, 8: 2118-2127 CrossRef Google Scholar

[92] Cho H, Wolf C, Kim JS, Yun HJ, Bae JS, Kim H, Heo JM, Ahn S, Lee TW. Adv Mater, 2017, 29: 1700579 CrossRef PubMed Google Scholar

[93] Mizusaki J, Arai K, Fueki K. Solid State Ion, 1983, 11: 203-211 CrossRef Google Scholar

[94] Chen S, Wen X, Sheng R, Huang S, Deng X, Green MA, Ho-Baillie A. ACS Appl Mater Interfaces, 2016, 8: 5351-5357 CrossRef Google Scholar

[95] Besleaga C, Abramiuc LE, Stancu V, Tomulescu AG, Sima M, Trinca L, Plugaru N, Pintilie L, Nemnes GA, Iliescu M, Svavarsson HG, Manolescu A, Pintilie I. J Phys Chem Lett, 2016, 7: 5168-5175 CrossRef PubMed Google Scholar

[96] Zhu ZQ, Klimes K, Holloway S, Li J. Adv Mater, 2017, 29: 1605002 CrossRef PubMed Google Scholar

[97] Dai X, Deng Y, Peng X, Jin Y. Adv Mater, 2017, 29: 1607022 CrossRef PubMed Google Scholar

[98] Wei Z, Perumal A, Su R, Sushant S, Xing J, Zhang Q, Tan ST, Demir HV, Xiong Q. Nanoscale, 2016, 8: 18021-18026 CrossRef PubMed Google Scholar

[99] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S, Sun B. Adv Funct Mater, 2017, 27: 1700338 CrossRef Google Scholar

[100] Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G. Nano Lett, 2017, 17: 313-321 CrossRef PubMed ADS Google Scholar

[101] Qasim K, Wang B, Zhang Y, Li P, Wang Y, Li S, Lee ST, Liao LS, Lei W, Bao Q. Adv Funct Mater, 2017, 27: 1606874 CrossRef Google Scholar

[102] Deng W, Xu X, Zhang X, Zhang Y, Jin X, Wang L, Lee ST, Jie J. Adv Funct Mater, 2016, 26: 4797-4802 CrossRef Google Scholar

[103] Cho H, Kim YH, Wolf C, Lee HD, Lee TW. Adv Mater, 2018, 350: 1704587 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic illustration to describe the chemical regulation methods for improving efficiencies and stabilities of PeLEDs (color online).

  • Figure 2

    (a) Optical images of CsPbX3 QDs under UV light irradiation and the PL spectra that cover the entire visible spectral region with narrow and bright emission. Reproduced with permission [7]. Copyright 2015, American Chemical Society. (b) Schematic illustration of the reaction system and process for LARP technique (left), the starting materials in the precursor solution (top right) and the photograph of a typical colloidal CH3NH3PbBr3 solution (bottom right). Reproduced with permission [51]. Copyright 2015, American Chemical Society. (c) Schematic of room temperature formation of CsPbX3 (X=Cl, Br or I). The Supersaturated recrystallization can be finished within 10 s through transferring the Cs+, Pb2+, and X ions from the soluble to insoluble solvents at room temperature (top); Snapshots of four typical samples after the addition of precursor ion solutions for 3 s under a UV light (down). Reproduced with permission [13]. Copyright 2016, Wiley-VCH. (d) Perovskite-related crystal structure, TEM and HRTEM images of CsPb2Br5 nanoplatelets, respectively (top). Photograph of anion exchanged CsPb2Br5 nanoplatelets under the UV light irradiation (bottom) (color online).

  • Figure 3

    (a) SEM images of the use of nanocrystal pinning affected film morphology variation. Reproduced with permission [1]. Copyright 2015, AAAS. (b) Scanning electron microscope (SEM) images of the top surfaces of the MAPbBr3 layers deposited using 6 vol% of HBr in the DMF/HBr cosolvent on PEDOT:PSS-coated ITO/glass substrates. Reproduced with permission [54]. Copyright 2016, Royal Society of Chemistry. (c) FE-SEM images showing the surface morphology of CsPbI3 films processed with 3 wt% PEO. (d) Steady-state (inset) and normalized photoluminescence (PL) spectra of the CsPbI3 films with and without PEO. (e) Luminance-voltage (L-V), and (f) external quantum efficiency characteristics of CsPbI3 LEDs with emission layers of thin CsPbI3 films processed with PEO (0, 0.5 wt%, 1 wt%, and 3 wt%). Reproduced with permission [55]. Copyright 2018, Wiley-VCH (color online).

  • Figure 4

    (a) The optical properties of undoped (top) and Mn-doped (bottom) CsPbCl3 NCs. Doped NCs exhibit dual-color emission, with the broad peak at ∼586 nm arising from a Mn2+ d-d transition. The PL excitation spectrum for the Mn2+ emission peak resembles the absorption spectrum, indicating that it is sensitized by the host NC. (b) Evolution of energy level diagram of Mn-doped CsPbCl3 NCs during forward and reverse anion exchange. Reproduced with permission [23]. Copyright 2017, American Chemical Society. (c) Temperature-dependent PL intensities for CsPbBr3:Mn (4.3 mol%) and pure CsPbBr3 nanocrystals via three heating/cooling cycles at 100, 150, and 200 °C, respectively. (d) EQE versus luminance characteristics for three types of PeLEDs based on the pure CsPbBr3, CsPbBr3:Mn (2.6 mol%), and CsPbBr3:Mn (3.8 mol%) nanocrystals. Reproduced with permission [66]. Copyright 2017, American Chemical Society (color online).

  • Figure 5

    (a) Schematic representation showing changes in the band alignments of CsPbBr3 NCs upon doping with 0.25% or 2.1% Bi. Reproduced with permission [24]. Copyright 2017, American Chemical Society. (b) Trend comparison of the average PL lifetimes and the PLQY results versus the dopant concentration in terms of CeBr3 ratio. (c) fs-TA spectra (excitation 320 nm) taken at several representative probe delays (left panel) and decay-associated spectra (DAS) (right panel) for the undoped (top) and doped (down) CsPbBr3 NCs (2.88% in terms of Ce/Pb ratio). (d) Schematic illustration of the involved photophysical processes and mechanisms, where VB, CB, X1, and Xn denote valence band, conduction band, the lowest excitonic state in the CB, and the higher-lying excitonic states in the CB, respectively. (e) EQE of these devices as a function of driving voltage based on the undoped CsPbBr3 and Ce3+-doped CsPbBr3 NCs. Reproduced with permission [21]. Copyright 2018, American Chemical Society (color online).

  • Figure 6

    (a) SEM image of Cs0.87MA0.13PbBr3 film on the ZnO/PVP. (b) Steady-state PL of CsPbBr3 films on ZnO, ZnO/PVP and Cs0.87MA0.13PbBr3 film on ZnO/PVP, respectively. (c) Current efficiencies and EQEs of devices with and without PVP buffer layer, with and without MABr additive, that is, ZnO/CsPbBr3, ZnO/PVP/CsPbBr3 and ZnO/PVP/Cs0.87MA0.13PbBr3, respectively. Reproduced with permission [18]. Copyright 2017, Nature Publishing Group.(d) CE of FA1−xCsxPbBr3 based PeLEDs with various FA:Cs molar ratios. Reproduced with permission [19]. Copyright 2018, American Chemical Society.(e) Luminance-voltage (L-V), and (f) current efficiency-voltage (CE-V) characteristic curves of PeLEDs based on FAPbBr3 film incorporated by different Rb contents. Reproduced with permission [20]. Copyright 2018, American Chemical Society (color online).

  • Figure 7

    (a) Summary of the PLQY for perovskite films with different 〈n〉 values at a low excitation intensity (6 mW cm–2). Reproduced with permission [2]. Copyright 2016, Nature Publishing Group. (b) EQE and energy conversion efficiency versus current density. For the NFPI6B MQW LED, a peak EQE of 11.7% is achieved at a current density of 38 mA cm−2 and an energy conversion efficiency of 5.5% is obtained at a current density of 100 mA cm−2. (c) PL excitation spectra of the NFPI7 MQW film at various emission energies. (d) Schematic of cascade energy transfer in MQWs. Excitation energy is transferred downstream from smaller-n QWs to larger-n QWs, and the emission is mainly from larger-n QWs. (e) Photo-induced changes in transient absorption spectra (ΔA) of the MQWs at selected probe delay times, which shows photobleaching at PB1 (2.18 eV), PB2 (1.95 eV) and PB3 (1.64 eV). (f) Stability data for a NFPI7 EL device tested at a constant current density of 10 mA cm−2. Reproduced with permission [4]. Copyright 2016, Nature Publishing Group (color online).

  • Figure 8

    (a) UV-Vis absorption and PL spectra, and (b) normalized PL intensities as a function of days for untreated and IDA-treated NCs. (c) Current density and luminance-voltage. (d) Luminous power efficiency and external quantum efficiency of original and IDA-treated CsPbI3 perovskite LED. Reproduced with permission [32]. Copyright 2018, American Chemical Society (color online).

  • Figure 9

    (a) Time-resolved PL spectra for MAPbBr3 polycrystalline film with and without APMs. (b) Steady-state PL spectra of MAPbBr3 polycrystalline film with and without APMs. Confocal PL image of MAPbBr3 polycrystalline film (c) without APMs, and (d) with EDA, respectively. Reproduced with permission [34]. Copyright 2017, American Chemical Society. (e) FTIR spectroscopy measurement for TOPO, PbBr2 and TOPO-PbBr2 films. (f) Current efficiency-voltage (CE-V) curves of PEA2(FAPbBr3)n−1PbBr4 (n=3 composition) devices with and without TOPO layer. Reproduced with permission [6]. Copyright 2018, Nature Publishing Group (color online).

  • Figure 10

    (a) SEM image showing the top view of the CsPb(Br/I)3 NC film on the glass substrate, and the SEM image of same film but modified with 0.4% PEI is given in (b). Reproduced with permission [38]. Copyright 2016, American Chemical Society. (c) Flat-band energy-level diagram of the TCQW CsPbBr3 PeLEDs. (d) Excitation-intensity dependent PLQY. Excitation wavelength: 445 nm. (e) EQE-luminance curve of a device. (f) Current density-luminance-voltage curves of a TCQW CsPbI3 PeLED. Reproduced with permission [82]. Copyright 2017, American Chemical Society (color online).

  • Table 1   Summary of the highest EQE of PeLEDs achieved by HI, LARP and polycrystalline film technology

    Number

    Synthesis method

    Emitting layer

    Peak emission (nm)

    EQEmax (%)

    Luminancemax (cd m−2)

    CEmax (cd A−1)

    Ref.

    1

    HI

    CsPbI3

    688

    7.25

    435

    0.49

    [38]

    2

    HI

    CsPbBr3

    512

    8.73

    1660

    18.8

    [57]

    3

    HI

    CsPbBrxCl3−x

    469

    0.50

    111

    [58]

    4

    LARP

    MAPbBr3

    524

    12.9

    22830

    [37]

    5

    Polycrystalline film technology

    (BA)2(Cs)n−1[PbnI3n+1]

    680

    6.23

    1392

    1.74

    [28]

    6

    Polycrystalline film technology

    PEA2(FAPbBr3)n−1PbBr4

    532

    14.36

    7829

    62.4

    [6]

    7

    Polycrystalline film technology

    (PEA)2PbBr4

    410

    0.038

    [59]

  • Table 2   Summary of the reported operational lifetime of PeLEDs

    Number

    Emitting layer

    Operational lifetime

    Test condition

    Environment

    Ref.

    1

    CsPbBr3

    L>L0 for >15 h

    L0>100 cd m−2 , at 66.67 mA cm−2

    air

    [98]

    2

    MAPbBr3

    L50=255 s

    L0=20 cd m−2 , at 66.67 mA cm−2

    air

    [98]

    3

    Cs0.1(MA0.17FA0.83)0.9PbBr0.33I2.67

    L50160 min

    R0=93.34 W sr−1 cm−2

    [26]

    4

    Cs0.1(MA0.17FA0.83)0.9PbBr2.97I0.03

    L>L0 for >475 min

    L0=736.7 cd m−2

    [26]

    5

    Cs0.1(MA0.17FA0.83)0.9PbCl1.5Br1.5

    L50<150 min

    L0=374.5 cd m−2

    [26]

    6

    CsPbBr3

    L50450 min

    L0=1000 cd m−2

    [26]

    7

    MAPbBr3

    L50300 min

    L0=1000 cd m−2

    [26]

    8

    NMA2FAPb2I7

    0.5EQEmax=2 h

    L0=10 mA cm−2

    N2

    [4]

    9

    NMA2CsPb2I6Cl

    0.5EQEmax=5 h

    L0=10 mA cm−2

    N2

    [30]

    10

    MAPbBr3

    L70=4 h

    at 20 mA cm−2

    air

    [34]

    11

    PEA2(FAPbBr3)n−1PbBr4

    running time=120 min

    0.3 or 0.5 mA cm−2

    air

    [6]

    12

    CsPbBr3:PEO=6:1 (weight ratio)

    L8080 h

    L0=1000 cd m−2

    air

    [99]

    13

    CsPbBr3 QDs

    L8010 h

    10 V

    air

    [100]

    14

    MAPbBr1.95I1.05

    0.5EQEmax=6.2 h

    L0580 cd m−2, at 25 mA cm−2

    in the controlled environment

    [101]

    15

    MAPbBr3

    0.5EQEmax=5.7 h

    L0580 cd m−2, at 25 mA cm−2

    in the controlled environment

    [101]

    16

    MAPbBr2.7I0.3

    0.5EQEmax=3.5 h

    L0580 cd m−2, at 25 mA cm−2

    in the controlled environment

    [101]

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1