logo

SCIENCE CHINA Chemistry, Volume 61, Issue 10: 1227-1242(2018) https://doi.org/10.1007/s11426-018-9326-y

Crystal phase control in two-dimensional materials

More info
  • ReceivedMay 30, 2018
  • AcceptedJul 9, 2018
  • PublishedSep 5, 2018

Abstract

It is the nature of crystals to exist in different polymorphs. The recent emergence of two-dimensional (2D) materials has evoked the discovery of a number of new crystal phases that are different from their bulk structures at ambient conditions, and revealed novel structure-dependent properties, which deserve in-depth understanding and further exploration. In this contribution, we review the recent development of crystal phase control in 2D materials, including group V and VI. transition metal dichalcogenides (TMDs), group IVA metal chalcogenides and noble metals. For each group of materials, we begin with introducing the various existing crystal phases and their structure-related properties, followed by a detailed discussion on factors that influence these crystal structures and thus the possible strategies for phase control. Finally, after summarizing the whole paper, we present the challenges and opportunities in this research direction.


Funded by

the Joint Research Fund for Overseas Chinese

Hong Kong and Macao Scholars(51528201)

AcRF Tier 1(2016-T1-001-147,2016-T1-002-051,2017-T1-001-150,2017-T1-002-119)

and NTU(M4081296.070.500000)


Acknowledgment

This work was supported by the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (51528201), the MOE under AcRF Tier 2 (ARC 19/15, MOE2014-T2-2-093, MOE2015-T2-2-057, MOE2016-T2-2-103, MOE2017-T2-1-162), AcRF Tier 1 (2016-T1-001-147, 2016-T1-002-051, 2017-T1-001-150, 2017-T1-002-119), and NTU under Start-Up Grant (M4081296.070.500000) in Singapore. We would like to acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore, for use of their electron microscopy (and/or X-ray) facilities.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. Nature, 2012, 490: 192-200 CrossRef PubMed ADS Google Scholar

[2] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[3] Schwierz F. Nat Nanotech, 2010, 5: 487-496 CrossRef PubMed ADS Google Scholar

[4] Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. Nat Chem, 2013, 5: 263-275 CrossRef PubMed ADS Google Scholar

[5] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. Nat Rev Mater, 2017, 2: 17033 CrossRef ADS Google Scholar

[6] Tan C, Zhang H. Chem Soc Rev, 2015, 44: 2713-2731 CrossRef PubMed Google Scholar

[7] Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Nat Nanotech, 2012, 7: 699-712 CrossRef PubMed ADS Google Scholar

[8] Zhang X, Lai Z, Ma Q, Zhang H. Chem Soc Rev, 2018, 47: 3301-3338 CrossRef PubMed Google Scholar

[9] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee SK, Colombo L. Nat Nanotech, 2014, 9: 768-779 CrossRef PubMed ADS Google Scholar

[10] Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H. Chem Rev, 2017, 117: 6225-6331 CrossRef PubMed Google Scholar

[11] Xu M, Liang T, Shi M, Chen H. Chem Rev, 2013, 113: 3766-3798 CrossRef PubMed Google Scholar

[12] Seo J, Jang J, Park S, Kim C, Park B, Cheon J. Adv Mater, 2008, 20: 4269-4273 CrossRef Google Scholar

[13] Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q. J Am Chem Soc, 2013, 135: 1213-1216 CrossRef PubMed Google Scholar

[14] Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Nature, 2014, 508: 373-377 CrossRef PubMed ADS Google Scholar

[15] Xia J, Zhu D, Wang L, Huang B, Huang X, Meng XM. Adv Funct Mater, 2015, 25: 4255-4261 CrossRef Google Scholar

[16] Wang X, Li Y, Huang L, Jiang XW, Jiang L, Dong H, Wei Z, Li J, Hu W. J Am Chem Soc, 2017, 139: 14976-14982 CrossRef PubMed Google Scholar

[17] Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat Nanotech, 2010, 6: 28-32 CrossRef PubMed ADS Google Scholar

[18] Cheng L, Wang C, Feng L, Yang K, Liu Z. Chem Rev, 2014, 114: 10869-10939 CrossRef PubMed Google Scholar

[19] Duan H, Yan N, Yu R, Chang CR, Zhou G, Hu HS, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson PJ, Li J, Li Y. Nat Commun, 2014, 5: 3093 CrossRef PubMed ADS Google Scholar

[20] Chen A, Ostrom C. Chem Rev, 2015, 115: 11999-12044 CrossRef PubMed Google Scholar

[21] Fan Z, Zhang H. Chem Soc Rev, 2016, 45: 63-82 CrossRef PubMed Google Scholar

[22] Zhou X, Zhang Q, Gan L, Li H, Xiong J, Zhai T. Adv Sci, 2016, 3: 1600177 CrossRef PubMed Google Scholar

[23] Trigunayat G. Solid State Ion, 1991, 48: 3-70 CrossRef Google Scholar

[24] Wilson JA, di Salvo FJ, Mahajan S. Phys Rev Lett, 1974, 32: 882-885 CrossRef ADS Google Scholar

[25] Wilson JA, Di Salvo FJ, Mahajan S. Adv Phys, 1975, 24: 117-201 CrossRef Google Scholar

[26] Huang Y, Sutter E, Sadowski JT, Cotlet M, Monti OLA, Racke DA, Neupane MR, Wickramaratne D, Lake RK, Parkinson BA, Sutter P. ACS Nano, 2014, 8: 10743-10755 CrossRef PubMed Google Scholar

[27] Ahn JH, Lee MJ, Heo H, Sung JH, Kim K, Hwang H, Jo MH. Nano Lett, 2015, 15: 3703-3708 CrossRef PubMed ADS Google Scholar

[28] Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan CL, Boey F, Mirkin CA, Zhang H. Nat Commun, 2011, 2: 292-297 CrossRef PubMed ADS Google Scholar

[29] Fan Z, Bosman M, Huang X, Huang D, Yu Y, Ong KP, Akimov YA, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P, Zhang H. Nat Commun, 2015, 6: 7684-7691 CrossRef PubMed ADS Google Scholar

[30] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P. Nature, 2018, 556: 43-50 CrossRef PubMed ADS arXiv Google Scholar

[31] McDonnell S, Addou R, Buie C, Wallace RM, Hinkle CL. ACS Nano, 2014, 8: 2880-2888 CrossRef PubMed Google Scholar

[32] Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng JL, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, Zhang G. J Am Chem Soc, 2017, 139: 10216-10219 CrossRef PubMed Google Scholar

[33] Voiry D, Goswami A, Kappera R, e Silva CCC, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M. Nat Chem, 2014, 7: 45-49 CrossRef PubMed ADS Google Scholar

[34] Benson EE, Zhang H, Schuman SA, Nanayakkara SU, Bronstein ND, Ferrere S, Blackburn JL, Miller EM. J Am Chem Soc, 2018, 140: 441-450 CrossRef PubMed Google Scholar

[35] Li Y, Duerloo KAN, Wauson K, Reed EJ. Nat Commun, 2016, 7: 10671 CrossRef PubMed ADS arXiv Google Scholar

[36] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong KY, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed EJ, Zhang X. Nature, 2017, 550: 487-491 CrossRef PubMed ADS Google Scholar

[37] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Nano Lett, 2011, 11: 5111-5116 CrossRef PubMed ADS Google Scholar

[38] Fan X, Xu P, Zhou D, Sun Y, Li YC, Nguyen MAT, Terrones M, Mallouk TE. Nano Lett, 2015, 15: 5956-5960 CrossRef PubMed ADS Google Scholar

[39] Sun Y, Yang W, Ren Y, Wang L, Lei C. Small, 2011, 7: 606-611 CrossRef PubMed Google Scholar

[40] Nayak AP, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh AK, Akinwande D, Lin JF. Nat Commun, 2014, 5: 3731-3739 CrossRef PubMed ADS Google Scholar

[41] Zeng Z, Sun T, Zhu J, Huang X, Yin Z, Lu G, Fan Z, Yan Q, Hng HH, Zhang H. Angew Chem Int Ed, 2012, 51: 9052-9056 CrossRef PubMed Google Scholar

[42] Liu Q, Li X, Xiao Z, Zhou Y, Chen H, Khalil A, Xiang T, Xu J, Chu W, Wu X, Yang J, Wang C, Xiong Y, Jin C, Ajayan PM, Song L. Adv Mater, 2015, 27: 4837-4844 CrossRef PubMed Google Scholar

[43] Kochat V, Apte A, Hachtel JA, Kumazoe H, Krishnamoorthy A, Susarla S, Idrobo JC, Shimojo F, Vashishta P, Kalia R, Nakano A, Tiwary CS, Ajayan PM. Adv Mater, 2017, 29: 1703754-1703761 CrossRef PubMed Google Scholar

[44] Rhodes D, Chenet DA, Janicek BE, Nyby C, Lin Y, Jin W, Edelberg D, Mannebach E, Finney N, Antony A, Schiros T, Klarr T, Mazzoni A, Chin M, Chiu Y, Zheng W, Zhang QR, Ernst F, Dadap JI, Tong X, Ma J, Lou R, Wang S, Qian T, Ding H, Osgood Jr. RM, Paley DW, Lindenberg AM, Huang PY, Pasupathy AN, Dubey M, Hone J, Balicas L. Nano Lett, 2017, 17: 1616-1622 CrossRef PubMed ADS arXiv Google Scholar

[45] Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas NJ, Nordlander P, Ajayan PM, Lou J, Fang Z. Adv Mater, 2014, 26: 6467-6471 CrossRef PubMed Google Scholar

[46] Fan Z, Huang X, Han Y, Bosman M, Wang Q, Zhu Y, Liu Q, Li B, Zeng Z, Wu J, Shi W, Li S, Gan CL, Zhang H. Nat Commun, 2015, 6: 6571 CrossRef PubMed ADS Google Scholar

[47] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F. Nano Lett, 2010, 10: 1271-1275 CrossRef PubMed ADS Google Scholar

[48] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J. Nat Commun, 2012, 3: 887 CrossRef PubMed ADS arXiv Google Scholar

[49] Mak KF, He K, Shan J, Heinz TF. Nat Nanotech, 2012, 7: 494-498 CrossRef PubMed ADS arXiv Google Scholar

[50] Zeng H, Dai J, Yao W, Xiao D, Cui X. Nat Nanotech, 2012, 7: 490-493 CrossRef PubMed ADS arXiv Google Scholar

[51] Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. J Am Chem Soc, 2013, 135: 10274-10277 CrossRef PubMed Google Scholar

[52] Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Nat Mater, 2013, 12: 850-855 CrossRef PubMed ADS arXiv Google Scholar

[53] Wang H, Lu Z, Xu S, Kong D, Cha JJ, Zheng G, Hsu PC, Yan K, Bradshaw D, Prinz FB, Cui Y. Proc Natl Acad Sci USA, 2013, 110: 19701-19706 CrossRef PubMed ADS Google Scholar

[54] Bertolazzi S, Brivio J, Kis A. ACS Nano, 2011, 5: 9703-9709 CrossRef PubMed Google Scholar

[55] Castellanos-Gomez A, Poot M, Steele GA, van der Zant HSJ, Agraït N, Rubio-Bollinger G. Adv Mater, 2012, 24: 772-775 CrossRef PubMed Google Scholar

[56] Velusamy DB, Kim RH, Cha S, Huh J, Khazaeinezhad R, Kassani SH, Song G, Cho SM, Cho SH, Hwang I, Lee J, Oh K, Choi H, Park C. Nat Commun, 2015, 6: 8063-8073 CrossRef PubMed ADS Google Scholar

[57] Huang X, Zeng Z, Zhang H. Chem Soc Rev, 2013, 42: 1934-1946 CrossRef PubMed Google Scholar

[58] Wilson JA, Yoffe AD. Adv Phys, 1969, 18: 193-335 CrossRef Google Scholar

[59] Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X, Cobden DH. Nat Phys, 2017, 13: 677-682 CrossRef ADS arXiv Google Scholar

[60] Ma X, Guo P, Yi C, Yu Q, Zhang A, Ji J, Tian Y, Jin F, Wang Y, Liu K, Xia T, Shi Y, Zhang Q. Phys Rev B, 2016, 94: 214105-214112 CrossRef ADS arXiv Google Scholar

[61] Duerloo KAN, Li Y, Reed EJ. Nat Commun, 2014, 5: 4214-4222 CrossRef PubMed ADS Google Scholar

[62] Keum DH, Cho S, Kim JH, Choe DH, Sung HJ, Kan M, Kang H, Hwang JY, Kim SW, Yang H, Chang KJ, Lee YH. Nat Phys, 2015, 11: 482-486 CrossRef ADS Google Scholar

[63] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat Nanotech, 2011, 6: 147-150 CrossRef PubMed ADS Google Scholar

[64] Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P. Nano Lett, 2013, 13: 4212-4216 CrossRef PubMed ADS Google Scholar

[65] Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Nat Mater, 2012, 11: 963-969 CrossRef PubMed ADS Google Scholar

[66] Cho S, Kim S, Kim JH, Zhao J, Seok J, Keum DH, Baik J, Choe DH, Chang KJ, Suenaga K, Kim SW, Lee YH, Yang H. Science, 2015, 349: 625-628 CrossRef PubMed ADS Google Scholar

[67] Kappera R, Voiry D, Yalcin SE, Branch B, Gupta G, Mohite AD, Chhowalla M. Nat Mater, 2014, 13: 1128-1134 CrossRef PubMed ADS Google Scholar

[68] Yoshida M, Ye J, Zhang Y, Imai Y, Kimura S, Fujiwara A, Nishizaki T, Kobayashi N, Nakano M, Iwasa Y. Nano Lett, 2017, 17: 5567-5571 CrossRef PubMed ADS Google Scholar

[69] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Angew Chem Int Ed, 2011, 50: 11093-11097 CrossRef PubMed Google Scholar

[70] Yang K, Wang X, Li H, Chen B, Zhang X, Li S, Wang N, Zhang H, Huang X, Huang W. Nanoscale, 2017, 9: 5102-5109 CrossRef PubMed Google Scholar

[71] Li H, Chen S, Jia X, Xu B, Lin H, Yang H, Song L, Wang X. Nat Commun, 2017, 8: 15377-15387 CrossRef PubMed ADS Google Scholar

[72] Yu Y, Nam GH, He Q, Wu XJ, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran FR, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. Nat Chem, 2018, 10: 638-643 CrossRef PubMed ADS Google Scholar

[73] Yu P, Lin J, Sun L, Le QL, Yu X, Gao G, Hsu CH, Wu D, Chang TR, Zeng Q, Liu F, Wang QJ, Jeng HT, Lin H, Trampert A, Shen Z, Suenaga K, Liu Z. Adv Mater, 2017, 29: 1603991-1603998 CrossRef PubMed Google Scholar

[74] Lin YC, Dumcenco DO, Huang YS, Suenaga K. Nat Nanotech, 2014, 9: 391-396 CrossRef PubMed ADS Google Scholar

[75] Zhou L, Zubair A, Wang Z, Zhang X, Ouyang F, Xu K, Fang W, Ueno K, Li J, Palacios T, Kong J, Dresselhaus MS. Adv Mater, 2016, 28: 9526-9531 CrossRef PubMed Google Scholar

[76] Song S, Keum DH, Cho S, Perello D, Kim Y, Lee YH. Nano Lett, 2016, 16: 188-193 CrossRef PubMed ADS Google Scholar

[77] Zhou L, Xu K, Zubair A, Liao AD, Fang W, Ouyang F, Lee YH, Ueno K, Saito R, Palacios T, Kong J, Dresselhaus MS. J Am Chem Soc, 2015, 137: 11892-11895 CrossRef PubMed Google Scholar

[78] Guo Y, Sun D, Ouyang B, Raja A, Song J, Heinz TF, Brus LE. Nano Lett, 2015, 15: 5081-5088 CrossRef PubMed ADS Google Scholar

[79] Dines MB. J Chem Educ, 1974, 51: 221-223 CrossRef ADS Google Scholar

[80] Dines MB. Mater Res Bull, 1975, 10: 287-291 CrossRef Google Scholar

[81] Somoano RB, Hadek V, Rembaum A. J Chem Phys, 1973, 58: 697-701 CrossRef ADS Google Scholar

[82] Whittingham MS. Chem Rev, 2004, 104: 4271-4302 CrossRef Google Scholar

[83] Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. ACS Nano, 2012, 6: 7311-7317 CrossRef PubMed Google Scholar

[84] Chrissafis K, Zamani M, Kambas K, Stoemenos J, Economou NA, Samaras I, Julien C. Mater Sci Eng-B, 1989, 3: 145-151 CrossRef Google Scholar

[85] Jiménez Sandoval S, Yang D, Frindt RF, Irwin JC. Phys Rev B, 1991, 44: 3955-3962 CrossRef ADS Google Scholar

[86] Yang D, Sandoval SJ, Divigalpitiya WMR, Irwin JC, Frindt RF. Phys Rev B, 1991, 43: 12053-12056 CrossRef ADS Google Scholar

[87] Young VG, McKelvy MJ, Glaunsinger WS, Von Dreele RB. Chem Mater, 1990, 2: 75-81 CrossRef Google Scholar

[88] Enyashin AN, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G. J Phys Chem C, 2011, 115: 24586-24591 CrossRef Google Scholar

[89] Rocquefelte X, Boucher F, Gressier P, Ouvrard G, Blaha P, Schwarz K. Phys Rev B, 2000, 62: 2397-2400 CrossRef ADS Google Scholar

[90] Kan M, Wang JY, Li XW, Zhang SH, Li YW, Kawazoe Y, Sun Q, Jena P. J Phys Chem C, 2014, 118: 1515-1522 CrossRef Google Scholar

[91] Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A. J Phys Chem C, 2015, 119: 13124-13128 CrossRef Google Scholar

[92] Heising J, Kanatzidis MG. J Am Chem Soc, 1999, 121: 638-643 CrossRef Google Scholar

[93] Cheng Y, Nie A, Zhang Q, Gan LY, Shahbazian-Yassar R, Schwingenschlogl U. ACS Nano, 2014, 8: 11447-11453 CrossRef PubMed Google Scholar

[94] Wang L, Xu Z, Wang W, Bai X. J Am Chem Soc, 2014, 136: 6693-6697 CrossRef PubMed Google Scholar

[95] Luo H, Xie W, Tao J, Inoue H, Gyenis A, Krizan JW, Yazdani A, Zhu Y, Cava RJ. Proc Natl Acad Sci USA, 2015, 112: E1174-E1180 CrossRef PubMed ADS arXiv Google Scholar

[96] Npwnpnny RJJ. Am Mineral, 1974, 64: 758–767. Google Scholar

[97] Johari P, Shenoy VB. ACS Nano, 2012, 6: 5449-5456 CrossRef PubMed Google Scholar

[98] Mitchell RS, Fujiki Y, Ishizawa Y. Nature, 1974, 247: 537-538 CrossRef ADS Google Scholar

[99] Pałosz B, Steurer W, Schulz H. Acta Crystlogr B Struct Sci, 1990, 46: 449-455 CrossRef Google Scholar

[100] Zhou X, Zhang Q, Gan L, Li H, Zhai T. Adv Funct Mater, 2016, 26: 4405-4413 CrossRef Google Scholar

[101] Bilousov OV, Ren Y, Törndahl T, Donzel-Gargand O, Ericson T, Platzer-Björkman C, Edoff M, Hägglund C. Chem Mater, 2017, 29: 2969-2978 CrossRef Google Scholar

[102] Zhou X, Gan L, Tian W, Zhang Q, Jin S, Li H, Bando Y, Golberg D, Zhai T. Adv Mater, 2015, 27: 8035-8041 CrossRef PubMed Google Scholar

[103] Ramakrishna Reddy KT, Koteswara Reddy N, Miles RW. Sol Energy Mater Sol Cells, 2006, 90: 3041-3046 CrossRef Google Scholar

[104] Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG. Adv Energy Mater, 2014, 4: 1400496 CrossRef Google Scholar

[105] Xia J, Li XZ, Huang X, Mao N, Zhu DD, Wang L, Xu H, Meng XM. Nanoscale, 2016, 8: 2063-2070 CrossRef PubMed ADS Google Scholar

[106] Tian Z, Guo C, Zhao M, Li R, Xue J. ACS Nano, 2017, 11: 2219-2226 CrossRef Google Scholar

[107] Patel M, Chavda A, Mukhopadhyay I, Kim J, Ray A. Nanoscale, 2016, 8: 2293-2303 CrossRef PubMed ADS Google Scholar

[108] Su G, Hadjiev VG, Loya PE, Zhang J, Lei S, Maharjan S, Dong P, M.~Ajayan P, Lou J, Peng H. Nano Lett, 2015, 15: 506-513 CrossRef PubMed ADS Google Scholar

[109] Hu Y, Luo B, Ye D, Zhu X, Lyu M, Wang L. Adv Mater, 2017, 29: 1606132 CrossRef PubMed Google Scholar

[110] Qu B, Ma C, Ji G, Xu C, Xu J, Meng YS, Wang T, Lee JY. Adv Mater, 2014, 26: 3854-3859 CrossRef PubMed Google Scholar

[111] Ye G, Gong Y, Lei S, He Y, Li B, Zhang X, Jin Z, Dong L, Lou J, Vajtai R, Zhou W, Ajayan PM. Nano Res, 2017, 10: 2386-2394 CrossRef Google Scholar

[112] Brent JR, Lewis DJ, Lorenz T, Lewis EA, Savjani N, Haigh SJ, Seifert G, Derby B, O'Brien P. J Am Chem Soc, 2015, 137: 12689-12696 CrossRef PubMed Google Scholar

[113] Fernandes PA, Sousa MG, Salomé PMP, Leitão JP, da Cunha AF. CrystEngComm, 2013, 15: 10278-10286 CrossRef Google Scholar

[114] Huang Y, Xu K, Wang Z, Shifa TA, Wang Q, Wang F, Jiang C, He J. Nanoscale, 2015, 7: 17375-17380 CrossRef PubMed ADS Google Scholar

[115] Zhou T, Pang WK, Zhang C, Yang J, Chen Z, Liu HK, Guo Z. ACS Nano, 2014, 8: 8323-8333 CrossRef PubMed Google Scholar

[116] Sutter E, Huang Y, Komsa HP, Ghorbani-Asl M, Krasheninnikov AV, Sutter P. Nano Lett, 2016, 16: 4410-4416 CrossRef PubMed ADS Google Scholar

[117] Mitchell RS, Fujiki Y, Ishizawa Y. J Cryst Growth, 1982, 57: 273-279 CrossRef ADS Google Scholar

[118] Schnering HG, Wiedemeier H. Z Kristallogr-Crystline Mater, 1981, 156: 143-150 CrossRef ADS Google Scholar

[119] Chattopadhyay T, Pannetier J, Von Schnering HG. J Phys Chem Solids, 1986, 47: 879-885 CrossRef ADS Google Scholar

[120] Bletskan DI. J Ovonic Res, 2005, 61–69. Google Scholar

[121] Tian Z, Zhao M, Xue X, Xia W, Guo C, Guo Y, Feng Y, Xue J. ACS Appl Mater Interfaces, 2018, 10: 12831-12838 CrossRef Google Scholar

[122] Sharma RC, Chang YA. Bull Alloy Phase Diagrams, 1986, 7: 68-72 CrossRef Google Scholar

[123] Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Acc Chem Res, 2008, 41: 1578-1586 CrossRef PubMed Google Scholar

[124] Qin HL, Wang D, Huang ZL, Wu DM, Zeng ZC, Ren B, Xu K, Jin J. J Am Chem Soc, 2013, 135: 12544-12547 CrossRef PubMed Google Scholar

[125] Saleem F, Zhang Z, Xu B, Xu X, He P, Wang X. J Am Chem Soc, 2013, 135: 18304-18307 CrossRef PubMed Google Scholar

[126] Fan Z, Huang X, Tan C, Zhang H. Chem Sci, 2015, 6: 95-111 CrossRef PubMed Google Scholar

[127] Li Q, Wu L, Wu G, Su D, Lv H, Zhang S, Zhu W, Casimir A, Zhu H, Mendoza-Garcia A, Sun S. Nano Lett, 2015, 15: 2468-2473 CrossRef PubMed ADS Google Scholar

[128] Liu X, Luo J, Zhu J. Nano Lett, 2006, 6: 408-412 CrossRef PubMed ADS Google Scholar

[129] Eustis S, el-Sayed MA. Chem Soc Rev, 2006, 35: 209-217 CrossRef PubMed Google Scholar

[130] Xia Y, Xiong Y, Lim B, Skrabalak SE. Angew Chem Int Ed, 2009, 48: 60-103 CrossRef PubMed Google Scholar

[131] Huang B, Kobayashi H, Yamamoto T, Matsumura S, Nishida Y, Sato K, Nagaoka K, Kawaguchi S, Kubota Y, Kitagawa H. J Am Chem Soc, 2017, 139: 4643-4646 CrossRef PubMed Google Scholar

[132] Zhang Q, Kusada K, Wu D, Yamamoto T, Toriyama T, Matsumura S, Kawaguchi S, Kubota Y, Kitagawa H. Nat Commun, 2018, 9: 510 CrossRef PubMed ADS Google Scholar

[133] Chakraborty I, Shirodkar SN, Gohil S, Waghmare UV, Ayyub P. J Phys-Condens Matter, 2014, 26: 025402 CrossRef PubMed Google Scholar

[134] Kusada K, Kobayashi H, Yamamoto T, Matsumura S, Sumi N, Sato K, Nagaoka K, Kubota Y, Kitagawa H. J Am Chem Soc, 2013, 135: 5493-5496 CrossRef PubMed Google Scholar

[135] Huang X, Li H, Li S, Wu S, Boey F, Ma J, Zhang H. Angew Chem Int Ed, 2011, 50: 12245-12248 CrossRef PubMed Google Scholar

[136] Liao H, Zhu J, Hou Y. Nanoscale, 2014, 6: 1049-1055 CrossRef PubMed ADS Google Scholar

[137] Fan Z, Zhu Y, Huang X, Han Y, Wang Q, Liu Q, Huang Y, Gan CL, Zhang H. Angew Chem Int Ed, 2015, 54: 5672-5676 CrossRef PubMed Google Scholar

[138] Fan Z, Chen Y, Zhu Y, Wang J, Li B, Zong Y, Han Y, Zhang H. Chem Sci, 2017, 8: 795-799 CrossRef PubMed Google Scholar

[139] Guo Q, Zhao Y, Mao WL, Wang Z, Xiong Y, Xia Y. Nano Lett, 2008, 8: 972-975 CrossRef PubMed ADS Google Scholar

[140] Diao J, Gall K, Dunn ML. Nat Mater, 2003, 2: 656-660 CrossRef PubMed ADS Google Scholar

[141] Kondo Y, Takayanagi K. Science, 2000, 289: 606-608 CrossRef ADS Google Scholar

[142] Chakraborty I, Carvalho D, Shirodkar SN, Lahiri S, Bhattacharyya S, Banerjee R, Waghmare U, Ayyub P. J Phys-Condens Matter, 2011, 23: 325401-325412 CrossRef PubMed ADS Google Scholar

[143] Gao K, Wang Y, Wang Z, Zhu Z, Wang J, Luo Z, Zhang C, Huang X, Zhang H, Huang W. Chem Commun, 2018, 54: 4613-4616 CrossRef PubMed Google Scholar

[144] Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Phys Rev Lett, 2004, 93: 156801 CrossRef PubMed ADS Google Scholar

[145] Titmuss S, Wander A, King DA. Chem Rev, 1996, 96: 1291-1306 CrossRef Google Scholar

[146] Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC. Chem Soc Rev, 2010, 39: 1805-1834 CrossRef PubMed Google Scholar

[147] Ghosh Chaudhuri R, Paria S. Chem Rev, 2012, 112: 2373-2433 CrossRef PubMed Google Scholar

[148] Jiang HL, Akita T, Ishida T, Haruta M, Xu Q. J Am Chem Soc, 2011, 133: 1304-1306 CrossRef PubMed Google Scholar

[149] Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ, Abruña HD. Nat Mater, 2012, 12: 81-87 CrossRef PubMed ADS Google Scholar

[150] Kim YH, Jun Y, Jun BH, Lee SM, Cheon J. J Am Chem Soc, 2002, 124: 13656-13657 CrossRef Google Scholar

[151] Liu Y, Wang C, Wei Y, Zhu L, Li D, Jiang JS, Markovic NM, Stamenkovic VR, Sun S. Nano Lett, 2011, 11: 1614-1617 CrossRef PubMed ADS Google Scholar

[152] Huang X, Li S, Wu S, Huang Y, Boey F, Gan CL, Zhang H. Adv Mater, 2012, 24: 979-983 CrossRef PubMed Google Scholar

[153] Rajaji V, Dutta U, Sreeparvathy PC, Sarma SC, Sorb YA, Joseph B, Sahoo S, Peter SC, Kanchana V, Narayana C. Phys Rev B, 2018, 97: 085107 CrossRef ADS Google Scholar

[154] Besson JM, Itié JP, Polian A, Weill G, Mansot JL, Gonzalez J. Phys Rev B, 1991, 44: 4214-4234 CrossRef ADS Google Scholar

[155] Qi Y, Shi W, Naumov PG, Kumar N, Sankar R, Schnelle W, Shekhar C, Chou FC, Felser C, Yan B, Medvedev SA. Adv Mater, 2017, 29: 1605965 CrossRef PubMed Google Scholar

[156] Tran MK, Levallois J, Lerch P, Teyssier J, Kuzmenko AB, Autès G, Yazyev OV, Ubaldini A, Giannini E, van der Marel D, Akrap A. Phys Rev Lett, 2014, 112: 047402 CrossRef PubMed ADS arXiv Google Scholar

[157] Mao HK, Bell PM, Shaner JW, Steinberg DJ. J Appl Phys, 1978, 49: 3276-3283 CrossRef ADS Google Scholar

[158] McMahon MI, Nelmes RJ. Chem Soc Rev, 2006, 35: 943-963 CrossRef PubMed Google Scholar

[159] Koski KJ, Kamp NM, Smith RK, Kunz M, Knight JK, Alivisatos AP. Phys Rev B, 2008, 78: 165410 CrossRef ADS Google Scholar

[160] Tong CJ, Zhang H, Zhang YN, Liu H, Liu LM. J Mater Chem A, 2014, 2: 17971-17978 CrossRef Google Scholar

[161] Singh AK, Zhuang HL, Hennig RG. Phys Rev B, 2014, 89: 245431 CrossRef ADS Google Scholar

[162] Fan Z, Zhang H. Acc Chem Res, 2016, 49: 2841-2850 CrossRef PubMed Google Scholar

[163] Fan Z, Huang X, Chen Y, Huang W, Zhang H. Nat Protoc, 2017, 12: 2367-2378 CrossRef PubMed Google Scholar

[164] Lu Q, Wang AL, Gong Y, Hao W, Cheng H, Chen J, Li B, Yang N, Niu W, Wang J, Yu Y, Zhang X, Chen Y, Fan Z, Wu XJ, Chen J, Luo J, Li S, Gu L, Zhang H. Nat Chem, 2018, 10: 456-461 CrossRef PubMed ADS Google Scholar

[165] Tan C, Chen J, Wu XJ, Zhang H. Nat Rev Mater, 2018, 3: 17089 CrossRef ADS Google Scholar

  • Figure 1

    Structural models of transition metal dichalcogenides (TMDs) in their (a) 1H, (b) 2Ha, (c) 2Hb, (d) 3R, (e) 1T, (f) 1T’ and (g) Td phases, where blue spheres represent metals and yellow spheres represent chalcogens. In (a, e, f, g), the top part shows the planar view of a single layer, and the bottom part shows the side view of single or few stacked layers. (b–d) Side view of stacked layers (color online).

  • Figure 2

    (a) Scheme of the electrochemical lithium intercalation process to produce 2D nanosheets from the layered bulk material [41]. (b–d) High resolution STEM images of (b) 2H, (c) 1T, and (d) 1T’ phases. The blue and yellow balls in image (b) and (c) indicate the position of Mo and S atoms [83]. (e) Scanning electron microscopy (SEM) image of the prepared 1T’-MoS2 crystals. (f) STEM image of a single-layer 1T’-MoS2 nanosheet. The asymmetric distribution of atoms is clearly shown. Inset: corresponding FFT diffraction. (g) Magnified XRD patterns of the (002) peaks of 1T’- and 2H- MoS2 crystals. (h) XPS Mo 3d spectra of 1T’-MoS2 crystals and 2H-MoS2 crystals obtained by annealing 1T’-MoS2 crystals [72] (color online).

  • Figure 3

    (a) Scanning tunneling microscopy (STM) image of a Mo1−x- WxTe2 single crystal with x=0.07, showing a clear hexagonal pattern as expected for the 2H-phase. (b) Magnification of a local area where one can detect a Te vacancy. (c) STM image of a Mo1−xWxTe2 single crystal with x=0.13, showing a pattern of parallel chains as expected for the orthorhombic phase. (d) Magnification of a local region revealing the intrachain structure and illustrating the crystallographic positions of transition metal (black dots) and Te (yellow dots) atoms, respectively. (e) Bulk phase-diagram of the Mo1−xWxTe2 series based on the array of experimental techniques [44]. (f) Atomic resolution STEM characterization of WSe2(1−x)- Te2x (x=0–1) alloyed monolayers with different Te concentration [73]. (g) The composition stability ranges of the 2H, 3R, 1T, and monoclinic MX2 forms in TaSe2−xTex and the dependence of Tc on x. The TaX2 coordination polyhedra are highlighted. Single-phase regions are shown in pink, and multiple-phase regions are shown in blue [95] (color online).

  • Figure 4

    (a) A schematic illustration of the growth process for 1T’ and 2H MoTe2 using Mo and MoO3 as precursors [75]. (b) Schematic representation of the laser-irradiation process. (c) Atomic image of a monolayer of 2H-MoTe2. Bright spheres are Te atoms with hexagonal symmetry. (d) Atomic Te vacancies created artificially. Te single vacancy and divacancy are visible and marked by 1 and 2, respectively. (e) Filtered high-resolution image near a Te vacancy showing the splitting of the Te atoms. (f) Atomic resolution image of a Te divacancy defect. (g) The energy differences between the 2H and 1T’ phases as a function of the Te vacancy concentration from the DFT calculation [66] (color online).

  • Figure 5

    (a) A 3D illustration of multilayered MoS2 in a DAC pressure medium for compression experiments. (b) Pressure-dependent electrical resistivity of MoS2. Three characteristic regions have been identified: semiconducting (SC), intermediate state (IS) and metallic regions. Inset: theoretically calculated pressure-dependent electrical resistivity. (c) Theoretical calculation of the pressure-dependent band gap of multilayered MoS2. (d) Theoretical band structure of multilayered MoS2 under hydrostatic pressure of 23.8 GPa. VBM and CBM are shown by red lines [40] (color online).

  • Figure 6

    (a, b) Schematics and measurement configuration of a MoTe2 monolayer field-effect transistor. (c) Gate-dependent Raman intensity ratios. The ratio F = 1T’(Ag)/[2H(A1’)+1T’(Ag)] (y-axis) shows hysteresis under an electrical field scan, with a loop width as large as 1.8  V. The black and red curves show increasing and decreasing gate voltage, respectively. (d) SHG intensity from the same monolayer sample as a function of crystal angle. The initial 2H phase at 0 V shows a typical six-fold pattern (black squares connected by a black line) [36] (color online).

  • Figure 7

    (a) Schematic of functionalization scheme. (Row 1) The 2H phase of TMDs is converted to the 1T phase via lithiation using butyllithium (BuLi), and the 1T phase is negatively charged. n indicates the excess charges carried by the exfoliated 1T-phase nanosheets. (Row 2) The nanosheets are functionalized using 2-iodoacetamide or iodomethane (R-I) solution. (Row 3) The charge on the nanosheets can also be quenched by reacting with iodine, with no covalent functionalization. (b) Photoluminescence spectra obtained from single-layer MoS2 grown by CVD (2H phase), from the metallic 1T phase and from the functionalized 1T phase. (c) Modulation of photoluminescence peak intensity with increasing amount of functionalization: blue, 0% Fct; green, ~5% Fct; orange, ~10% Fct; purple, ~20% Fct; red, ~30% Fct. Photoluminescence peaks are normalized to the Raman peak of silicon at 520 cm−1 [33]. (d) Schematic of the various functional groups on 1T MoS2. (e) Linear sweep voltammograms (LSV) for glassy carbon electrodes deposited with functionalized, 1T, and bulk (2H) MoS2 [34] (color online).

  • Figure 8

    Structural models of layered orthorhombic (a) and cubic (b) phased IVAMCs. The left, middle and right columns show the 3D-view, side view and top planar view, respectively (color online).

  • Figure 9

    (a) Main panel, high-resolution transmission electron microscopy (HRTEM) image of single-crystal SnSe (scale bar, 2  nm). Bottom inset, corresponding diffraction pattern along the [011] zone axis; top inset, the line profile (distance is plotted in Å, y axis) along the dotted line AB in the main panel showing the d spacing of (100). (b) Simulated crystal structures of the phase at room temperature (RT; Pnma) and at high temperature (HT; Cmcm), viewing along the [211] and [121] directions; planes (1-1-1), (-101) and (0-11) are marked by blue lines. (c) Diffraction patterns obtained at different temperatures. B, zone axis. There is a difference in measured angle between (1-1-1) and (0-11) of about 2.6° between room and elevated temperatures [14] (color online).

  • Figure 10

    (a, b) The experimental setting and various nanosheets grown on SiO2/Si substrates. (a) The schematic of the experimental setups. (b) The temperature gradient in the furnace. The middle of the second heating zone is defined as the origin. (c–f) The optical images of the as-grown nanosheets. (g–j) The corresponding SEM images of NSs. Scale bar: (c-f) 30 μm, (g) 0.5 μm, (h, i, j) 2 μm [114] (color online).

  • Figure 11

    Growth schematics and representative optical microscope images of (a) hexagonal 2D SnS2 in N2 and (b) orthorhombic 2D SnS in N2−H2. Raman spectra of (c) SnS2 2D crystals and (d) SnS 2D crystals of various thickness. Insets: atomic force microscope images. HRTEM images of (e) a SnS2 crystal and (f) a SnS crystal. The corresponding FFT-diffraction patterns of the insets clearly show the hexagonal and orthorhombic lattices [27] (color online).

  • Figure 12

    Evolution of few-layer SnS2 under electron-beam irradiation. (a) HRTEM image of a thin area in a SnS2 flake. (b) HRTEM image of the same flake after 200 keV electron-beam exposure at room temperature for 12 min. (c) TEM image of the flake after 200 keV electron-beam exposure at 300 °C for 36 min. (d) Electron diffraction pattern showing the SnS2 crystal structure along [001] zone axis. (e) Diffraction pattern showing a superposition of the original SnS2 reflections and additional reflections that can be indexed to the orthorhombic α-SnS crystal structure. (f) Diffraction pattern indexed to single crystalline orthorhombic α-SnS crystal structure along the [011] zone axis. Scale bars of panels (a) and (c) insets: 1 nm [116] (color online).

  • Figure 13

    (a) Crystal phase periodic table for noble metals. (b) Structural models for fcc, 2H and 4H phases for noble metals. The left, middle and right columns show the unit cell 3D view, close-packed plane top-view, and side-view showing the packing sequence of close-packed planes, respectively (color online).

  • Figure 14

    (a) TEM image of ~2.4 nm thick AuSSs on a GO surface. (b) HRTEM image of a small region of a typical AuSS oriented normal to [110]h [28]. (c) TEM image of a typical AuSP synthesized on GO. (d, e) HRTEM images of the areas designated in (c). Insets in (d, e): Fast Fourier transform (FFT) generated selected area electron diffraction (SAED) patterns of the corresponding HRTEM images in (d, e) [135]. (f) 2H structure and stacking faults were observed at the reaction time of 4 h. (g) 4H structure appeared at the reaction time of 8 h. Inset: the corresponding FFT pattern of the marked 4H domain in (g). (h) The 4H structure were obtained at the reaction time of 12 h. Inset: the corresponding FFT pattern of the HRTEM image shown in (h) [29] (color online).

  • Figure 15

    (a) High-magnification TEM images of hcp Rh nanosheets. (b) Aberration-corrected HRTEM image of hcp Rh nanosheets. Inset: thecorresponding filtered HRTEM image using the crystallographic method. (c) A typical SAED pattern of hcp Rh nanosheets [19]. (d) A typical TEM image of an Au NRB after the ligand exchange. (e, f) HRTEM images taken from the edge and end of the marked region in (d), respectively. (g) Schematic illustration of the ligand exchange induced phase transformation of 4H Au NRBs [29] (color online).

  • Figure 16

    (a) Bright-field TEM image of typical fcc Au@Ag square sheets on GO sheets. SAED patterns taken along the [100]f (b) and [310]f (c) zone axes of an fcc Au@Ag square sheet. (d) A typical HRTEM image of fcc Au@Ag square sheet. (e) Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and the corresponding overlapped STEM-EDS elemental mapping (Au: red color; Ag: green color) showing the cross-section of a typical fcc Au@Ag square sheet. (f) Bright-field TEM image of typical hcp/fcc Au@Ag square sheets on GO sheets. (g) SAED pattern and (h) HRTEM image of a representative hcp/fcc Au@Ag square sheet. (i) Aberration-corrected HAADF-STEM image of the cross-section of an hcp/fcc Au@Ag square sheet collected along the [001]h/[1¯11]f zone axes. Inset: the corresponding FFT pattern of the HAADF-STEM image shown in (i) [46]. (j) TEM image, (k) SAED pattern and (l) HRTEM image of a typical fcc Au@Pt rhombic nanoplate. Inset in (l): the corresponding FFT pattern of the HRTEM image shown in (l). (m) TEM image and (n) the corresponding SAED pattern of a typical fcc Au@Pd rhombic nanoplate [137] (color online).

  • Figure 17

    (a) XRD patterns of the as-grown Ag nanoplates on the wafer obtained during compression with small steps. (b) XRD patterns obtained with large steps [39].

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1