logo

SCIENCE CHINA Chemistry, Volume 61, Issue 8: 1004-1013(2018) https://doi.org/10.1007/s11426-018-9333-x

Recent advances in Ni−Al bimetallic catalysis for unreactive bond transformation

More info
  • ReceivedJun 29, 2018
  • AcceptedJul 17, 2018
  • PublishedJul 24, 2018

Abstract

Ni−Al bimetallic catalysis proves to be an efficient catalytic strategy for unreactive bond transformations. Recently, chiral bifunctional ligands, especially amphoteric secondary phosphine oxide (SPO) ligand, are used for a more powerful synergistic effect in the bimetal-catalyzed reactions, providing not only milder reaction conditions and higher reactivity but also excellent reaction selectivity. Herein, we give a brief review on the development of Ni−Al bimetallic catalytic system and highlight recent advances in enantioselective Ni−Al bimetallic catalysis for unreactive bond transformation.


Funded by

the National Natural Science Foundation of China(21672107)

the “1000-Youth Talents Plan”.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21672107) and the “1000-Youth Talents Plan”.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] D’Souza DM, Müller TJJ, Das S, Brudvig GW, Crabtree RH, Díez-González S, Marion N, Nolan SP, Zhong C, Shi X, Du Z, Shao Z, Hu Y, Wang C, Li X, He X, Liu X, He LN. Chem Soc Rev, 2007, 36: 1095-1108 CrossRef PubMed Google Scholar

[2] Goossen LJ, Goossen K, Stanciu C, Su B, Cao ZC, Shi ZJ, Wang Q, Su Y, Li L, Huang H, Tobisu M, Chatani N, Gao Y, Ji CL, Hong X, Colby DA, Bergman RG, Ellman JA, Labinger JA, Bercaw JE, Wencel-Delord J, Dröge T, Liu F, Glorius F. Angew Chem Int Ed, 2009, 48: 3569-3571 CrossRef PubMed Google Scholar

[3] Rousseau G, Breit B, Rouquet G, Chatani N, Corbet M, De Campo F, Song G, Li X, Zhu RY, Farmer ME, Chen YQ, Yu JQ, He J, Wasa M, Chan KSL, Shao Q, Yu JQ. Angew Chem Int Ed, 2011, 50: 2450-2494 CrossRef PubMed Google Scholar

[4] Lyons TW, Sanford MS, Engle KM, Yu JQ, Ye B, Cramer N, Saint-Denis TG, Zhu RY, Chen G, Wu QF, Yu JQ. Chem Rev, 2010, 110: 1147-1169 CrossRef PubMed Google Scholar

[5] Biswas J, Maxwell IE, Otterstedt JE, Gevert SB, Jäås SG, Menon PG. Appl Catal, 1990, 63: 197-258 CrossRef Google Scholar

[6] Fu J, Huo X, Li B, Zhang W, Pye DR, Mankad NP, Mankad NP, Hetterscheid DGH, Chikkali SH, de Bruin B, Reek JNH, Park J, Hong S, Pérez-Temprano MH, Casares JA, Espinet P, Matsunaga S, Shibasaki M, van den Beuken EK, Feringa BL, Rowlands GJ. Org Biomol Chem, 2017, 15: 9747-9759 CrossRef PubMed Google Scholar

[7] Trost BM, Toste FD, Pinkerton AB, Bolm C, Legros J, Le Paih J, Zani L, Yin L, Liebscher J, Monnier F, Taillefer M, Rodríguez N, Goossen LJ, Yeung CS, Dong VM. Chem Rev, 2001, 101: 2067-2096 CrossRef Google Scholar

[8] Jun CH, Murakami M, Matsuda T, Dermenci A, Coe JW, Dong G, Souillart L, Cramer N, Murakami M, Ishida N, Chen P, Billett BA, Tsukamoto T, Dong G, Fumagalli G, Stanton S, Bower JF, Chen F, Wang T, Jiao N. Chem Soc Rev, 2004, 33: 610-618 CrossRef PubMed Google Scholar

[9] Rubin M, Rubina M, Gevorgyan V, Seiser T, Cramer N, Wiberg KB, Fenoglio RA. Chem Rev, 2007, 107: 3117-3179 CrossRef PubMed Google Scholar

[10] William Suggs J, Cox SD, Suggs JW, Jun CH, Jun CH, Lee H, Jun CH, Lee H, Lim SG, Dreis AM, Douglas CJ, Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J. J Organomet Chem, 1981, 221: 199-201 CrossRef Google Scholar

[11] Tobisu M, Chatani N, Kou X, Fan J, Tong X, Shen Z, Chen F, Wang T, Jiao N, Wen Q, Lu P, Wang Y, Murahashi S, Naota T, Nakajima N, Taw FL, White PS, Bergman RG, Brookhart M, Nakao Y, Oda S, Hiyama T, Nakao Y, Yukawa T, Hirata Y, Oda S, Satoh J, Hiyama T, Tobisu M, Kita Y, Chatani N. Chem Soc Rev, 2008, 37: 300-307 CrossRef PubMed Google Scholar

[12] DuPont. Chem Eng News, 1971, 49: 30−31. Google Scholar

[13] Nakao Y, Hiyama T, Nakao Y, Hiyama T, Yada A, Yukawa T, Idei H, Nakao Y, Hiyama T, Nakao Y, Brunkan NM, Brestensky DM, Jones WD, Nakao Y, Hirata Y, Tanaka M, Hiyama T, Watson MP, Jacobsen EN, Hirata Y, Yada A, Morita E, Nakao Y, Hiyama T, Ohashi M, Ogoshi S, Minami Y, Yoshiyasu H, Nakao Y, Hiyama T, Miyazaki Y, Ohta N, Semba K, Nakao Y, Rondla NR, Ogilvie JM, Pan Z, Douglas CJ. J Syn Org Chem Jpn, 2007, 65: 999-1008 CrossRef Google Scholar

[14] Nakao Y, Yada A, Ebata S, Hiyama T. J Am Chem Soc, 2007, 129: 2428-2429 CrossRef PubMed Google Scholar

[15] Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J Am Chem Soc, 2008, 130: 12874-12875 CrossRef PubMed Google Scholar

[16] Hirata Y, Yukawa T, Kashihara N, Nakao Y, Hiyama T, Yada A, Yukawa T, Nakao Y, Hiyama T, Nakao Y, Yada A, Hiyama T, Yada A, Ebata S, Idei H, Zhang D, Nakao Y, Hiyama T, Yamada Y, Ebata S, Hiyama T, Nakao Y. J Am Chem Soc, 2009, 131: 10964-10973 CrossRef PubMed Google Scholar

[17] Huang J, Haar CM, Nolan SP, Marcone JE, Moloy KG, Shen Q, Hartwig JF. Organometallics, 1999, 18: 297-299 CrossRef Google Scholar

[18] Nakai K, Kurahashi T, Matsubara S. J Am Chem Soc, 2011, 133: 11066-11068 CrossRef PubMed Google Scholar

[19] Nakai K, Kurahashi T, Matsubara S, Nakai K, Kurahashi T, Matsubara S. Org Lett, 2013, 15: 856-859 CrossRef PubMed Google Scholar

[20] Patra T, Agasti S, Akanksha S, Maiti D, Patra T, Agasti S, Modak A, Maiti D. Chem Commun, 2013, 49: 69-71 CrossRef PubMed Google Scholar

[21] Romeder G. Hydrogen Cyanide. e-EROS Encyclopedia of Reagents for Organic Synthesis, 2000. Google Scholar

[22] Fang X, Yu P, Morandi B, Yu P, Morandi B, Fang X, Yu P, Prina Cerai G, Morandi B. Science, 2016, 351: 832-836 CrossRef PubMed ADS Google Scholar

[23] Tamaki T, Ohashi M, Ogoshi S. Angew Chem Int Ed, 2011, 50: 12067-12070 CrossRef PubMed Google Scholar

[24] Nakao Y, Kanyiva KS, Hiyama T, Yang L, Semba K, Nakao Y, Hara N, Saito T, Semba K, Kuriakose N, Zheng H, Sakaki S, Nakao Y. J Am Chem Soc, 2008, 130: 2448-2449 CrossRef PubMed Google Scholar

[25] Nakao Y, Idei H, Kanyiva KS, Hiyama T, Kanyiva KS, Löbermann F, Nakao Y, Hiyama T, Nakao Y, Idei H, Kanyiva KS, Hiyama T, Nakao Y, Yamada Y, Kashihara N, Hiyama T, Tsai CC, Shih WC, Fang CH, Li CY, Ong TG, Yap GPA, Nakao Y, Morita E, Idei H, Hiyama T, Miyazaki Y, Yamada Y, Nakao Y, Hiyama T, Shih WC, Chen WC, Lai YC, Yu MS, Ho JJ, Yap GPA, Ong TG, Tamura R, Yamada Y, Nakao Y, Hiyama T, Liu S, Sawicki J, Driver TG, Lee WC, Wang CH, Lin YH, Shih WC, Ong TG, Yu MS, Lee WC, Chen CH, Tsai FY, Ong TG, Lee WC, Shih WC, Wang TH, Liu Y, Yap GPA, Ong TG, Lee WC, Chen CH, Liu CY, Yu MS, Lin YH, Ong TG, Okumura S, Tang S, Saito T, Semba K, Sakaki S, Nakao Y, Okumura S, Nakao Y, Inoue F, Saito T, Semba K, Nakao Y, Okumura S, Komine T, Shigeki E, Semba K, Nakao Y. J Am Chem Soc, 2009, 131: 5070-5071 CrossRef PubMed Google Scholar

[26] Donets PA, Cramer N. Angew Chem, 2015, 127: 643-647 CrossRef Google Scholar

[27] Miura T, Yamauchi M, Murakami M. Chem Commun, 2009, 36: 1470-1471 CrossRef PubMed Google Scholar

[28] Kajita Y, Matsubara S, Kurahashi T. J Am Chem Soc, 2008, 130: 6058-6059 CrossRef PubMed Google Scholar

[29] Shiba T, Kurahashi T, Matsubara S. J Am Chem Soc, 2013, 135: 13636-13639 CrossRef PubMed Google Scholar

[30] Nakai K, Kurahashi T, Matsubara S. Chem Lett, 2013, 42: 1238-1240 CrossRef Google Scholar

[31] Sergeev AG, Hartwig JF, Sergeev AG, Webb JD, Hartwig JF. Science, 2011, 332: 439-443 CrossRef PubMed ADS Google Scholar

[32] Watson MP, Jacobsen EN. Hsieh JC, Ebata S, Nakao Y, Hiyama T. Synlett, 2010, 11: 1709−1711. Google Scholar

[33] Diesel J, Finogenova AM, Cramer N. J Am Chem Soc, 2018, 140: 4489-4493 CrossRef PubMed Google Scholar

[34] Yoshikai N, Mashima H, Nakamura E, Yoshikai N, Matsuda H, Nakamura E, Ackermann L, Althammer A, Jin Z, Li YJ, Ma YQ, Qiu LL, Fang JX. J Am Chem Soc, 2005, 127: 17978-17979 CrossRef PubMed Google Scholar

[35] Dubrovina NV, Börner A, Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ, Nemoto T, Hamada Y, Nemoto T, Ackermann L, Nemoto T, Hamada Y, Shaikh TM, Weng CM, Hong FE, Achard T, Dong K, Wang Z, Ding K, Dong K, Li Y, Wang Z, Ding K, Chen C, Zhang Z, Jin S, Fan X, Geng M, Zhou Y, Wen S, Wang X, Chung LW, Dong XQ, Zhang X. Angew Chem Int Ed, 2004, 43: 5883-5886 CrossRef PubMed Google Scholar

[36] Donets PA, Cramer N. J Am Chem Soc, 2013, 135: 11772-11775 CrossRef PubMed Google Scholar

[37] Liu QS, Wang DY, Yang ZJ, Luan YX, Yang JF, Li JF, Pu YG, Ye M. J Am Chem Soc, 2017, 139: 18150-18153 CrossRef PubMed Google Scholar

[38] Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc, 2018, 140: 5360-5364 CrossRef PubMed Google Scholar

[39] Tan KL, Bergman RG, Ellman JA. J Am Chem Soc, 2001, 123: 2685-2686 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1