logo

SCIENCE CHINA Chemistry, Volume 61, Issue 12: 1494-1502(2018) https://doi.org/10.1007/s11426-018-9347-9

Materials based on group IVA elements for alloying-type sodium storage

More info
  • ReceivedMay 13, 2018
  • AcceptedAug 9, 2018
  • PublishedNov 1, 2018

Abstract

There are five elements in group IVA of the periodic table, i.e., carbon (C), silicon (Si), germanium (Ge), tin (Sn) and lead (Pb), of which Si, Ge, and Sn can be used as alloying-type electrode materials for sodium-ion batteries. Pb is also capable of alloying with sodium, but it is generally ruled out as the cause of toxicity. In recent years, materials based on Si, Ge, and Sn have been intensively exploited as sodium anodes because of their abundant resource and large capacity with reasonable working voltages. However, successful deployment of these anode materials needs to overcome kinetic and thermodynamic issues related to poor electrochemical activity, particle pulverization associated with large volume swelling, and formation of unstable solid-electrolyte interphase. A diversity of material strategies has been employed to address these difficulties, mainly leveraging on the knowledge recently advanced for lithium anodes. This review highlights such issues and provides valuable insights for possible solutions, which serves as a guide and inspiration for future material innovation for rechargeable batteries.


Funded by

the National Natural Science Foundation of China(51672182,51772197)

the Thousand Young Talents Plan

the Jiangsu Natural Science Foundation(BK20151219)

the Key University Science Research Project of Jiangsu Province(17KJA430013)

the 333 High-Level Talents Project in Jiangsu Province

the Six Talent Peaks Project in Jiangsu Province

and of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51672182, 51772197, 51872192), the Thousand Young Talents Plan, the Jiangsu Natural Science Foundation (BK20180002, BK20151219), the Key University Science Research Project of Jiangsu Province (17KJA430013), the 333 High-Level Talents Project in Jiangsu Province, the Six Talent Peaks Project in Jiangsu Province, and of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Hwang JY, Myung ST, Sun YK. Chem Soc Rev, 2017, 46: 3529-3614 CrossRef PubMed Google Scholar

[2] Slater MD, Kim D, Lee E, Johnson CS. Adv Funct Mater, 2013, 23: 947-958 CrossRef Google Scholar

[3] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem Rev, 2014, 114: 11636-11682 CrossRef PubMed Google Scholar

[4] Kundu D, Talaie E, Duffort V, Nazar LF. Angew Chem Int Ed, 2015, 54: 3431-3448 CrossRef PubMed Google Scholar

[5] Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S. Phys Chem Chem Phys, 2014, 16: 15007-15028 CrossRef PubMed ADS Google Scholar

[6] Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Acc Chem Res, 2016, 49: 231-240 CrossRef PubMed Google Scholar

[7] Kim Y, Ha KH, Oh SM, Lee KT. Chem Eur J, 2014, 20: 11980-11992 CrossRef PubMed Google Scholar

[8] Hou H, Qiu X, Wei W, Zhang Y, Ji X. Adv Energy Mater, 2017, 7: 1602898 CrossRef Google Scholar

[9] Ni J, Li L, Lu J. ACS Energy Lett, 2018, 3: 1137-1144 CrossRef Google Scholar

[10] Ni J, Fu S, Wu C, Maier J, Yu Y, Li L. Adv Mater, 2016, 28: 2259-2265 CrossRef PubMed Google Scholar

[11] Fu S, Ni J, Xu Y, Zhang Q, Li L. Nano Lett, 2016, 16: 4544-4551 CrossRef PubMed ADS Google Scholar

[12] Ni J, Wang W, Wu C, Liang H, Maier J, Yu Y, Li L. Adv Mater, 2017, 29: 1605607 CrossRef PubMed Google Scholar

[13] Peng L, Zhu Y, Chen D, Ruoff RS, Yu G. Adv Energy Mater, 2016, 6: 1600025 CrossRef Google Scholar

[14] Xiao Y, Lee SH, Sun YK. Adv Energy Mater, 2017, 7: 1601329 CrossRef Google Scholar

[15] Fan X, Mao J, Zhu Y, Luo C, Suo L, Gao T, Han F, Liou SC, Wang C. Adv Energy Mater, 2015, 5: 1500174 CrossRef Google Scholar

[16] Lu Y, Zhou P, Lei K, Zhao Q, Tao Z, Chen J. Adv Energy Mater, 2017, 7: 1601973 CrossRef Google Scholar

[17] Jache B, Adelhelm P. Angew Chem, 2014, 126: 10333-10337 CrossRef Google Scholar

[18] Ni J, Huang Y, Gao L. J Power Sources, 2013, 223: 306-311 CrossRef Google Scholar

[19] Li Y, Hu YS, Titirici MM, Chen L, Huang X. Adv Energy Mater, 2016, 6: 1600659 CrossRef Google Scholar

[20] Jung SC, Kim HJ, Kang YJ, Han YK. J Alloys Compd, 2016, 688: 158-163 CrossRef Google Scholar

[21] Chevrier VL, Ceder G. J Electrochem Soc, 2011, 158: A1011 CrossRef Google Scholar

[22] Wang X, Fan L, Gong D, Zhu J, Zhang Q, Lu B. Adv Funct Mater, 2016, 26: 1104-1111 CrossRef Google Scholar

[23] Zhang L, Hu X, Chen C, Guo H, Liu X, Xu G, Zhong H, Cheng S, Wu P, Meng J, Huang Y, Dou S, Liu H. Adv Mater, 2017, 29: 1604708 CrossRef PubMed Google Scholar

[24] Arrieta U, Katcho NA, Arcelus O, Carrasco J. Sci Rep, 2017, 7: 5350 CrossRef PubMed ADS Google Scholar

[25] Marzouk A, Soto FA, Burgos JC, Balbuena PB, El-Mellouhi F. J Electrochem Soc, 2017, 164: A1644-A1650 CrossRef Google Scholar

[26] Wang C, Sun X, Li C, Wu G, Wang B, Wang Z, Meng Q, Yang L. J Alloys Compd, 2016, 654: 157-162 CrossRef Google Scholar

[27] Jung SC, Jung DS, Choi JW, Han YK. J Phys Chem Lett, 2014, 5: 1283-1288 CrossRef PubMed Google Scholar

[28] Xu Y, Swaans E, Basak S, Zandbergen HW, Borsa DM, Mulder FM. Adv Energy Mater, 2015, 6: 1501436 CrossRef Google Scholar

[29] Jangid MK, Vemulapally A, Sonia FJ, Aslam M, Mukhopadhyay A. J Electrochem Soc, 2017, 164: A2559-A2565 CrossRef Google Scholar

[30] Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Electrochim Acta, 2016, 211: 265-272 CrossRef Google Scholar

[31] Legrain F, Manzhos S. J Power Sources, 2015, 274: 65-70 CrossRef ADS arXiv Google Scholar

[32] Zhu J, Schwingenschlögl U. 2D Mater, 2016, 3: 035012 CrossRef ADS Google Scholar

[33] Shi L, Zhao TS, Xu A, Xu JB. J Mater Chem A, 2016, 4: 16377-16382 CrossRef Google Scholar

[34] Guo GC, Wang D, Wei XL, Zhang Q, Liu H, Lau WM, Liu LM. J Phys Chem Lett, 2015, 6: 5002-5008 CrossRef PubMed Google Scholar

[35] Yang JH, Zhang Y, Yin WJ, Gong XG, Yakobson BI, Wei SH. Nano Lett, 2016, 16: 1110-1117 CrossRef PubMed ADS Google Scholar

[36] Zhu Z, Guan J, Liu D, Tománek D. ACS Nano, 2015, 9: 8284-8290 CrossRef Google Scholar

[37] Jiang H, Zhao T, Ren Y, Zhang R, Wu M. Sci Bull, 2017, 62: 572-578 CrossRef Google Scholar

[38] Duveau D, Israel SS, Fullenwarth J, Cunin F, Monconduit L. J Mater Chem A, 2016, 4: 3228-3232 CrossRef Google Scholar

[39] Ni J, Han Y, Gao L, Lu L. Electrochem Commun, 2013, 31: 84-87 CrossRef Google Scholar

[40] Wang G, Ni J, Wang H, Gao L. J Mater Chem A, 2013, 1: 4112-4118 CrossRef Google Scholar

[41] Ni J, Zhang L, Fu S, Savilov SV, Aldoshin SM, Lu L. Carbon, 2015, 92: 15-25 CrossRef Google Scholar

[42] Xiao X, Li X, Zheng S, Shao J, Xue H, Pang H. Adv Mater Interfaces, 2017, 4: 1600798 CrossRef Google Scholar

[43] Yue GH, Zhang XQ, Zhao YC, Xie QS, Zhang XX, Peng DL. RSC Adv, 2014, 4: 21450-21455 CrossRef Google Scholar

[44] Ni J, Li L. Adv Funct Mater, 2018, 28: 1704880 CrossRef Google Scholar

[45] Ni J, Fu S, Yuan Y, Ma L, Jiang Y, Li L, Lu J. Adv Mater, 2018, 30: 1704337 CrossRef PubMed Google Scholar

[46] Abel PR, Lin YM, de Souza T, Chou CY, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB. J Phys Chem C, 2013, 117: 18885-18890 CrossRef Google Scholar

[47] Lahiri A, Olschewski M, Gustus R, Borisenko N, Endres F. Phys Chem Chem Phys, 2016, 18: 14782-14786 CrossRef PubMed ADS Google Scholar

[48] Ni J, Jiang Y, Wu F, Maier J, Yu Y, Li L. Adv Funct Mater, 2018, 28: 1707179 CrossRef Google Scholar

[49] Kajita T, Itoh T. Electrochim Acta, 2016, 195: 192-198 CrossRef Google Scholar

[50] Kajita T, Itoh T. Phys Chem Chem Phys, 2017, 19: 1003-1009 CrossRef PubMed ADS Google Scholar

[51] Li W, Ke L, Wei Y, Guo S, Gan L, Li H, Zhai T, Zhou H. J Mater Chem A, 2017, 5: 4413-4420 CrossRef Google Scholar

[52] He H, Xu M, Yang J, He B, Xie J. Micro Nano Lett, 2017, 12: 777-780 CrossRef Google Scholar

[53] Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C. Nano Lett, 2017, 17: 3830-3836 CrossRef PubMed ADS Google Scholar

[54] Nam DH, Kim TH, Hong KS, Kwon HS. ACS Nano, 2014, 8: 11824-11835 CrossRef PubMed Google Scholar

[55] Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. J Phys Chem C, 2014, 118: 20086-20093 CrossRef Google Scholar

[56] Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Nano Lett, 2013, 13: 3093-3100 CrossRef PubMed ADS Google Scholar

[57] Liu J, Wen Y, van Aken PA, Maier J, Yu Y. Nano Lett, 2014, 14: 6387-6392 CrossRef PubMed ADS Google Scholar

[58] Zhang R, Wang Z, Ma W, Yu W, Lu S, Liu X. RSC Adv, 2017, 7: 29458-29463 CrossRef Google Scholar

[59] Kalubarme RS, Lee JY, Park CJ. ACS Appl Mater Interfaces, 2015, 7: 17226-17237 CrossRef Google Scholar

[60] Qin B, Zhang H, Diemant T, Geiger D, Raccichini R, Behm RJ, Kaiser U, Varzi A, Passerini S. ACS Appl Mater Interfaces, 2017, 9: 26797-26804 CrossRef Google Scholar

[61] Chen M, Chao D, Liu J, Yan J, Zhang B, Huang Y, Lin J, Shen ZX. Adv Mater, 2017, 27: 1606232. Google Scholar

[62] Wang K, Huang Y, Qin X, Wang M, Sun X, Yu M. ChemElectroChem, 2017, 4: 2308-2313 CrossRef Google Scholar

[63] Liu M, Liu Y, Zhang Y, Li Y, Zhang P, Yan Y, Liu T. Sci Rep, 2016, 6: 31496 CrossRef PubMed ADS Google Scholar

[64] Ao X, Jiang J, Ruan Y, Li Z, Zhang Y, Sun J, Wang C. J Power Sources, 2017, 359: 340-348 CrossRef ADS Google Scholar

[65] Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X. Adv Energy Mater, 2016, 6: 1502057 CrossRef Google Scholar

[66] Yang L, Li S, Liu J, Zhu K, Liu S, Lei M. J Mater Chem A, 2017, 5: 1629-1636 CrossRef Google Scholar

[67] He P, Fang Y, Yu XY, Lou XWD. Angew Chem, 2017, 129: 12370-12373 CrossRef Google Scholar

[68] Zhu C, Kopold P, Li W, van Aken PA, Maier J, Yu Y. Adv Sci, 2015, 2: 1500200 CrossRef PubMed Google Scholar

[69] Choi J, Kim NR, Lim K, Ku K, Yoon HJ, Kang JG, Kang K, Braun PV, Jin HJ, Yun YS. Small, 2017, 13: 1700767 CrossRef PubMed Google Scholar

[70] Sun W, Rui X, Yang D, Sun Z, Li B, Zhang W, Zong Y, Madhavi S, Dou S, Yan Q. ACS Nano, 2015, 9: 11371-11381 CrossRef Google Scholar

[71] Jiang Y, Wei M, Feng J, Ma Y, Xiong S. Energy Environ Sci, 2016, 9: 1430-1438 CrossRef Google Scholar

[72] Tu F, Xu X, Wang P, Si L, Zhou X, Bao J. J Phys Chem C, 2017, 121: 3261-3269 CrossRef Google Scholar

[73] Ni J, Zhao Y, Liu T, Zheng H, Gao L, Yan C, Li L. Adv Energy Mater, 2014, 4: 1400798 CrossRef Google Scholar

[74] Ni J, Li Y. Adv Energy Mater, 2016, 6: 1600278 CrossRef Google Scholar

[75] Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Adv Energy Mater, 2016, 6: 1600376 CrossRef Google Scholar

[76] Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Adv Mater, 2014, 26: 4037-4042 CrossRef PubMed Google Scholar

[77] Fan X, Gao T, Luo C, Wang F, Hu J, Wang C. Nano Energy, 2017, 38: 350-357 CrossRef Google Scholar

[78] Qian J, Xiong Y, Cao Y, Ai X, Yang H. Nano Lett, 2014, 14: 1865-1869 CrossRef PubMed ADS Google Scholar

[79] Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Energy Environ Sci, 2015, 8: 3531-3538 CrossRef Google Scholar

[80] Wang W, Zhang J, Yu DYW, Li Q. J Power Sources, 2017, 364: 420-425 CrossRef ADS Google Scholar

[81] Xu Y, Peng B, Mulder FM. Adv Energy Mater, 2018, 8: 1701847 CrossRef Google Scholar

[82] Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Adv Mater, 2014, 26: 4139-4144 CrossRef PubMed Google Scholar

[83] Lan D, Wang W, Li Q. Nano Energy, 2017, 39: 506-512 CrossRef Google Scholar

[84] Ni J, Fu S, Wu C, Zhao Y, Maier J, Yu Y, Li L. Adv Energy Mater, 2016, 6: 1502568 CrossRef Google Scholar

[85] Xia S, Ni J, Savilov SV, Li L. Nano Energy, 2018, 45: 407-412 CrossRef Google Scholar

[86] Ni J, Zhao Y, Chen J, Gao L, Lu L. Electrochem Commun, 2014, 44: 4-7 CrossRef Google Scholar

[87] Liang H, Ni J, Li L. Nano Energy, 2017, 33: 213-220 CrossRef Google Scholar

  • Figure 1

    Gravimetric and volumetric capacity of Si, Ge and Sn anodes for SIBs (color online).

  • Figure 2

    Crystal structures of cubic Si (a), cubic Ge (b), and tetragonal Sn (c) (color online).

  • Figure 3

    Electrochemical tests of Si NP electrodes. (a) Capacity retention and Coulombic efficiency; (b) GITT desodiation/sodiation test (current pulses: 20 mA g−1 for 5 min during charge/discharge; relaxation for 25 min). GITT was carried out on a battery cell after cycling at 20 mA g−1 for five cycles. Reproduced with permission [28], copyright 2016, Wiley-VCH (color online).

  • Figure 4

    (a) Schematic diagram of the fabrication process of Ge@G@TiO2 NFs and sodium ion storage behaviors of Ge@G@TiO2, Ge@G, and Ge composite electrodes; (b) cyclic voltammetry curves of Ge@G@TiO2 between 0.01 and 2.5 V with a scan rate of 0.2 mV s−1 and the inset SEM of Ge@G@TiO2 NFs; (c) rate performance of three different electrodes at different current rates. Reproduced with permission [22], copyright 2016, Wiley-VCH (color online).

  • Figure 5

    (a) Schematic illustration of the electrodeposition system for the synthesis of the Sn nanofibers; (b) cycle performance and Coulombic efficiency of the Sn nanofibers at a rate of 0.1 C over a voltage range of 0.001 to 0.65 V (vs. Na/Na+). Reproduced with permission [54], copyright 2014, American Chemical Society (color online).

  • Figure 6

    (a) Schematic illustration of ESD technique to fabricate a carbon-coated 3D porous interconnected SnS; (b) XRD pattern of such SnS/C nanocomposite and the inset SEM of carbon-coated 3D porous interconnected SnS; (c) the rate performance; (d) cycling performance and Coulombic efficiency at current density of 1 A g−1 cycling for sodium storage. Reproduced with permission [68], copyright 2015, Wiley-VCH (color online).

  • Figure 7

    (a–d) Schematic illustration for the sodiation and desodiation. Yellow outlayer denotes carbon. (e) Cycling performance of the SnP3/C electrode at a current rate of 150 mA g−1. Reproduced with permission [15],copyright 2015, Wiley-VCH (color online).

  • Table 1   Technical requirements for sodium anode materials

    Item

    Requirement

    Gravimetric capacity

    ≥300 mA h g−1

    Desodiation voltage

    ≤2 V

    Initial Coulombic efficiency

    ≥80%

    Cycle stability

    60% upon 500 cycles

    Rate performance

    2 C rate charge/discharge

    Low temperature at −20 °C

    60% of capacity at room temperature

    High temperature at 60 °C

    90% of capacity at room temperature

    Safety

    Free of Na dendrite

    Cost

    Close to graphite

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1