logo

SCIENCE CHINA Chemistry, Volume 62, Issue 2: 245-250(2019) https://doi.org/10.1007/s11426-018-9351-3

Supramolecular gelator based on a [c2]daisy chain rotaxane: efficient gel-solution transition by ring-sliding motion

More info
  • ReceivedJul 19, 2018
  • AcceptedAug 22, 2018
  • PublishedOct 31, 2018

Abstract

A supramolecular gelator based on the bistable [c2]daisy chain rotaxane is designed and synthesized. The reversible actuation of the [c2]daisy chain renders the formed supramolecular gel with acid/base-responsive switching between gel and monomer solution. The efficient switching process is attributed to the ring-sliding effect of the rotaxane in response to acid/base stimuli. The ring-inhibited hydrogen bonding stacking results in a nearly quantitatively disassembly of the gel network after addition of base which is hard to be realized by traditional heating strategy in hydrogen-bonding-supported gel.


Funded by

the National Natural Science Foundation of China(21790361,21871084,21672060)

the Fundamental Research Funds for the Central Universities(WJ1616011,WJ1213007,222201717003)

and the Programme of Introducing Talents of Discipline to Universities(B16017)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21790361, 21871084, 21672060), the Fundamental Research Funds for the Central Universities (WJ1616011, WJ1213007, 222201717003), and the Programme of Introducing Talents of Discipline to Universities (B16017)


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Wang Q, Chen D, Tian H, Ma X, Tian H, Koch JG, Brennessel WW, Kraft BM, Yan X, Jiang B, Cook TR, Zhang Y, Li J, Yu Y, Huang F, Yang HB, Stang PJ. Sci China Chem, 2018, 61: doi: 10.1007/s11426-018-9267-3 CrossRef Google Scholar

[2] Li Z, Zhang YM, Wang HY, Li H, Liu Y, Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F, Taylor DL, In Het Panhuis M, Zheng W, Chen LJ, Yang G, Sun B, Wang X, Jiang B, Yin GQ, Zhang L, Li X, Liu M, Chen G, Yang HB. Macromolecules, 2017, 50: 1141-1146 CrossRef ADS Google Scholar

[3] Ni M, Zhang N, Xia W, Wu X, Yao C, Liu X, Hu XY, Lin C, Wang L, Qiu Y, Park K, Ma X, Zhao Y, Wu S, Li J, Liang H, Wang L, Chen X, Jin G, Xu X, Yang HH. J Am Chem Soc, 2016, 138: 6643-6649 CrossRef PubMed Google Scholar

[4] Rambarran T, Bertrand A, Gonzaga F, Boisson F, Bernard J, Fleury E, Ganachaud F, Brook MA, Zhang A, Yang L, Lin Y, Yan L, Lu H, Wang L. Chem Commun, 2016, 52: 6681-6684 CrossRef PubMed Google Scholar

[5] Feng Q, Wei K, Zhang K, Yang B, Tian F, Wang G, Bian L, Guo J, Yuan C, Guo M, Wang L, Yan F, Anderson CA, Jones AR, Briggs EM, Novitsky EJ, Kuykendall DW, Sottos NR, Zimmerman SC. NPG Asia Mater, 2018, 10: e455 CrossRef Google Scholar

[6] Hu XY, Zhang P, Wu X, Xia W, Xiao T, Jiang J, Lin C, Wang L, Zhang Q, Xu TY, Zhao CX, Jin WH, Wang Q, Qu DH. Polym Chem, 2012, 3: 3060-3063b CrossRef Google Scholar

[7] Ji X, Zhu K, Yan X, Ma Y, Li J, Hu B, Yu Y, Huang F, Wang S, Xu Z, Wang T, Liu X, Lin Y, Shen YZ, Lin C, Wang L. Macromol Rapid Commun, 2012, 33: 1197-1202 CrossRef PubMed Google Scholar

[8] Ustinov A, Weissman H, Shirman E, Pinkas I, Zuo X, Rybtchinski B, Obert E, Bellot M, Bouteiller L, Andrioletti F, Lehen-Ferrenbach C, Boué F. J Am Chem Soc, 2011, 133: 16201-16211 CrossRef PubMed Google Scholar

[9] Zhang CW, Ou B, Jiang ST, Yin GQ, Chen LJ, Xu L, Li X, Yang HB, Zhang Q, Wang WZ, Yu JJ, Qu DH, Tian H, Zhang Q, Qu DH, Wang QC, Tian H, Wang WZ, Gao C, Zhang Q, Ye XH, Qu DH. Polym Chem, 2018, 9: 2021-2030 CrossRef Google Scholar

[10] Han Z, Gao Y, Zhai X, Peng J, Tian A, Zhao Y, Hu C, Meazza L, Foster JA, Fucke K, Metrangolo P, Resnati G, Steed JW, Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G, Priimagi A, Cavallo G, Metrangolo P, Resnati G. Cryst Growth Des, 2016, 9: 1225-1234 CrossRef Google Scholar

[11] Ji X, Shi B, Wang H, Xia D, Jie K, Wu ZL, Huang F, Hu XY, Wu X, Wang S, Chen D, Xia W, Lin C, Pan Y, Wang L, Zhang Q, Shi CY, Qu DH, Long YT, Feringa BL, Tian H, Wang Q, Zhang YY, Dai XY, Shi XH, Liu WG. Adv Mater, 2015, 27: 8062-8066 CrossRef PubMed Google Scholar

[12] Wu X, Yu Y, Gao L, Hu XY, Wang L, Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW, Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Org Chem Front, 2016, 3: 966-970 CrossRef Google Scholar

[13] Yang S, Luan Z, Gao C, Yu J, Qu D, Cui JS, Ba QK, Ke H, Valkonen A, Rissanen K, Jiang W, Stoddart JF, Zhang ZJ, Zhang HY, Wang H, Liu Y, Zhang H, Hu J, Qu DH, Cao ZQ, Miao Q, Zhang Q, Li H, Qu DH, Tian H, Gao C, Luan ZL, Zhang Q, Yang S, Rao SJ, Qu DH, Tian H. Sci China Chem, 2018, 61: 306-310 CrossRef Google Scholar

[14] Dong S, Yuan J, Huang F, Fu X, Gu RR, Zhang Q, Rao SJ, Zheng XL, Qu DH, Tian H, Zhang Q, Qu DH, Cao ZQ, Luan ZL, Zhang Q, Gu RR, Ren J, Qu DH, Hsueh SY, Kuo CT, Lu TW, Lai CC, Liu YH, Hsu HF, Peng SM, Chen C, Chiu SH. Chem Sci, 2014, 5: 247-252 CrossRef Google Scholar

[15] Goujon A, Lang T, Mariani G, Moulin E, Fuks G, Raya J, Buhler E, Giuseppone N. J Am Chem Soc, 2017, 139: 14825-14828 CrossRef PubMed Google Scholar

[16] Bruns CJ, Stoddart JF, Stoddart JF, Chang JC, Tseng SH, Lai CC, Liu YH, Peng SM, Chiu SH. Acc Chem Res, 2014, 47: 2186-2199 CrossRef PubMed Google Scholar

[17] Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F, Yan X, Xu D, Chen J, Zhang M, Hu B, Yu Y, Huang F, Wang H, Ji X, Li Z, Zhu CN, Yang X, Li T, Wu ZL, Huang F. Adv Mater, 2012, 24: 362-369 CrossRef PubMed Google Scholar

[18] Lin HY, Snider BB, Li F, Li Y, Zhou Z, Lv S, Deng Q, Xu X, Yin L. J Org Chem, 2012, 77: 4832-4836 CrossRef PubMed Google Scholar

[19] Coutrot F́́, Romuald C, Busseron E. Org Lett, 2008, 10: 3741-3744 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic representation of the switchable contraction/extension of [c2]daisy chain rotaxane (a) and proposed gel-solution transition mechanism (b) (color online).

  • Figure 2

    Synthesis route of daisy chain rotaxane R1 (color online).

  • Figure 3

    Partial 1H NMR spectrum (400 MHz, CDCl3, 298 K) of daisy chain rotaxane R1 at concentration of 5.50 mM before (a) and after (b) addition of 2.0 equiv. of DBU (color online).

  • Figure 4

    (a) Photographic representation of the gel responding to temperature and pH; frequency-varied rheology curves of the gel before (b) and after (c) addition of DBU at room temperature; (d) rheology curves of gel with increased temperature (color online).

  • Figure 5

    Characteristic polarized optical microscopy images. (a, b) Images of gel under polarized light and in bright field correspondingly; (c, d) images of solution under polarized light and in bright field correspondingly (color online).

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1