logo

SCIENCE CHINA Chemistry, Volume 62, Issue 2: 238-244(2019) https://doi.org/10.1007/s11426-018-9371-0

A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells

More info
  • ReceivedSep 11, 2018
  • AcceptedOct 16, 2018
  • PublishedNov 9, 2018

Abstract

The efficient ternary all-polymer solar cells (PSCs) are designed and fabricated, using a polymer acceptor of NDP-V-C7 and analogue co-donors containing a chlorinated polymer PBClT and classical PTB7-Th. PBClT and PTB7-Th possess very similar chemical structure and matched energy levels to form the cascade of the co-donors. Meanwhile, benefiting from those analogous polymer structures, there is little influence of the morphology in blend film compared to their pristine polymer films. The binary PBClT:NDP-V-C7 devices exhibit a high open-circuit voltage (Voc) due to the deep HOMO level of PBClT. The Voc of all-PSCs could be finely manipulated by adjusting the content of PBClT in blend film. The ternary all-PSCs have the more balanced charge mobility and prolonged carrier lifetime compared to the binary devices. The PBClT also help improve the miscibility of ternary blend and suppress crystallization in films, bringing about favorable morphology with appropriate orientation and surface roughness in blend film. With the optimal processing, the champion ternary all-PSCs obtain a high PCE of 9.03%, which is about 10% enhancement compared to that of binary device. The results indicate that the ternary approach using analogue co-donors is a practical method to enhance the performance of all-PSCs.


Acknowledgment

This work was supported by the SUSTech, the Recruitment Program of Global Youth Experts of China, the National Natural Science Foundation of China (51773087, 21733005), the Natural Science Foundation of Guangdong Province (2016A030313637), Shenzhen Fundamental Research Program (JCYJ20170817111214740) and Shenzhen Nobel Prize Scientists Laboratory Project (C17783101). We also thank Dr. Joseph Strzalka and Dr. Zhang Jiang for the assistance with GIWAXS measurements. Use of the Advanced Photon Source (APS) at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Marrocchi A, Facchetti A, Lanari D, Petrucci C, Vaccaro L. Energy Environ Sci, 2016, 9: 763-786 CrossRef Google Scholar

[2] Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119-128 CrossRef PubMed ADS Google Scholar

[3] He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174-179 CrossRef ADS Google Scholar

[4] Lin Y, Zhan X. Acc Chem Res, 2016, 49: 175-183 CrossRef PubMed Google Scholar

[5] Li Y. Acc Chem Res, 2012, 45: 723-733 CrossRef PubMed Google Scholar

[6] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293 CrossRef PubMed ADS Google Scholar

[7] Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y. Nat Photon, 2014, 9: 35-41 CrossRef Google Scholar

[8] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y. J Am Chem Soc, 2015, 137: 3886-3893 CrossRef PubMed Google Scholar

[9] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423-9429 CrossRef PubMed Google Scholar

[10] Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E, White JM, Williamson RM, Subbiah J, Ouyang J, Holmes AB, Wong WWH, Jones DJ. Nat Commun, 2015, 6: 6013 CrossRef PubMed ADS Google Scholar

[11] Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531-537 CrossRef Google Scholar

[12] Guo X, Zhou N, Lou SJ, Smith J, Tice DB, Hennek JW, Ortiz RP, Navarrete JTL, Li S, Strzalka J, Chen LX, Chang RPH, Facchetti A, Marks TJ. Nat Photon, 2013, 7: 825-833 CrossRef ADS Google Scholar

[13] Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089 CrossRef ADS Google Scholar

[14] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[15] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027 CrossRef ADS Google Scholar

[16] Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307-1313 CrossRef Google Scholar

[17] Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868 CrossRef PubMed Google Scholar

[18] Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562-1564 CrossRef Google Scholar

[19] Che X, Li Y, Qu Y, Forrest SR. Nat Energy, 2018, 3: 422-427 CrossRef ADS Google Scholar

[20] Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J. Adv Mater, 2018, 30: 1800613 CrossRef PubMed Google Scholar

[21] Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J. J Am Chem Soc, 2018, 140: 7159-7167 CrossRef PubMed Google Scholar

[22] Kolhe NB, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. Chem Mater, 2018, 30: 6540-6548 CrossRef Google Scholar

[23] Chen S, An Y, Dutta GK, Kim Y, Zhang ZG, Li Y, Yang C. Adv Funct Mater, 2017, 27: 1603564 CrossRef Google Scholar

[24] Gao L, Zhang ZG, Xue L, Min J, Zhang J, Wei Z, Li Y. Adv Mater, 2016, 28: 1884-1890 CrossRef PubMed Google Scholar

[25] Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS, Kim BJ. Nat Commun, 2015, 6: 8547 CrossRef PubMed ADS Google Scholar

[26] Kim W, Choi J, Kim JH, Kim T, Lee C, Lee S, Kim M, Kim BJ, Kim TS. Chem Mater, 2018, 30: 2102-2111 CrossRef Google Scholar

[27] Li Z, Xu X, Zhang W, Meng X, Ma W, Yartsev A, Inganäs O, Andersson MR, Janssen RAJ, Wang E. J Am Chem Soc, 2016, 138: 10935-10944 CrossRef PubMed Google Scholar

[28] Kim T, Choi J, Kim HJ, Lee W, Kim BJ. Macromolecules, 2017, 50: 6861-6871 CrossRef ADS Google Scholar

[29] Hwang YJ, Courtright BAE, Ferreira AS, Tolbert SH, Jenekhe SA. Adv Mater, 2015, 27: 4578-4584 CrossRef PubMed Google Scholar

[30] Kim T, Younts R, Lee W, Lee S, Gundogdu K, Kim BJ. J Mater Chem A, 2017, 5: 22170-22179 CrossRef Google Scholar

[31] Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906 CrossRef PubMed Google Scholar

[32] Guo Y, Li Y, Awartani O, Han H, Zhao J, Ade H, Yan H, Zhao D. Adv Mater, 2017, 29: 1700309 CrossRef PubMed Google Scholar

[33] Hwang YJ, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA. J Am Chem Soc, 2015, 137: 4424-4434 CrossRef PubMed Google Scholar

[34] Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716-722 CrossRef ADS Google Scholar

[35] Hwang YJ, Courtright BAE, Jenekhe SA. MRS Commun, 2015, 5: 229-234 CrossRef Google Scholar

[36] Li Z, Ying L, Xie R, Zhu P, Li N, Zhong W, Huang F, Cao Y. Nano Energy, 2018, 51: 434-441 CrossRef Google Scholar

[37] Liu T, Guo Y, Yi Y, Huo L, Xue X, Sun X, Fu H, Xiong W, Meng D, Wang Z, Liu F, Russell TP, Sun Y. Adv Mater, 2016, 28: 10008-10015 CrossRef PubMed Google Scholar

[38] Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T. Nat Energy, 2016, 1: 16118 CrossRef Google Scholar

[39] Li Z, Xu X, Zhang W, Meng X, Genene Z, Ma W, Mammo W, Yartsev A, Andersson MR, Janssen RAJ, Wang E. Energy Environ Sci, 2017, 10: 2212-2221 CrossRef Google Scholar

[40] Hu Z, Chen H, Zhong X, Qu J, Chen W, Liu A, He F. Acta Polym Sin, 2018, 2: 273–283. Google Scholar

[41] Chao P, Mu Z, Wang H, Mo D, Chen H, Meng H, Chen W, He F. ACS Appl Energy Mater, 2018, 1: 2365-2372 CrossRef Google Scholar

[42] Chen H, Hu Z, Wang H, Liu L, Chao P, Qu J, Chen W, Liu A, He F. Joule, 2018, 2: 1623-1634 CrossRef Google Scholar

[43] Wang Z, Zhang Y, Zhang J, Wei Z, Ma W. Adv Energy Mater, 2016, 6: 1502456 CrossRef Google Scholar

[44] You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2016, 11: 75-81 CrossRef PubMed ADS Google Scholar

[45] Kyaw AKK, Wang DH, Luo C, Cao Y, Nguyen TQ, Bazan GC, Heeger AJ. Adv Energy Mater, 2014, 4: 1301469 CrossRef Google Scholar

[46] Murgatroyd PN. J Phys D-Appl Phys, 1970, 3: 151-156 CrossRef ADS Google Scholar

[47] Shuttle CG, O'Regan B, Ballantyne AM, Nelson J, Bradley DDC, de Mello J, Durrant JR. Appl Phys Lett, 2008, 92: 093311 CrossRef ADS Google Scholar

[48] Cowan SR, Street RA, Cho S, Heeger AJ. Phys Rev B, 2011, 83: 035205 CrossRef ADS Google Scholar

[49] Hu Z, Chen H, Qu J, Zhong X, Chao P, Xie M, Lu W, Liu A, Tian L, Su YA, Chen W, He F. ACS Energy Lett, 2017, 2: 753-758 CrossRef Google Scholar

  • Figure 1

    (a) Chemical structures of PTB7-Th, PBClT and NDP-V-C7. (b) Normalized UV-Vis absorptions of PTB7-Th, PBClT and NDP-V-C7 films. (c) The molecular energy levels of PTB7-Th, PBClT and NDP-V-C7 (color online).

  • Figure 2

    (a) J-V and (b) EQE curves of binary and champion ternary all-PSCs (color online).

  • Figure 3

    (a) The PL spectra of neat polymer and blend films; experimental Jsc versus (b) light intensity, (c) normalized TPV and (d) TPC for binary and champion ternary devices, respectively (color online).

  • Figure 4

    DSC traces of NDP-V-C7 and their blend containing binary and ternary (color online).

  • Figure 5

    GIWAXS patterns of (a) PTB7-Th, (b) PBClT and (c) PTB7-Th:PBClT (0.85:0.15) films blending with NDP-V-C7; the related line-cuts in the (d) out-of-plane and (e) in-plane (color online).

  • Table 1   The performance parameters of ternary PSCs with various mass ratios of donors under AM irradiation

    PTB7-Th:PBClT

    Voc (V)

    Jsc

    (mA cm−2)

    FF

    (%)

    PCE

    (%)a)

    PCEmax

    (%)

    1.00:0.00

    0.75

    16.73±0.18

    65.01±0.48

    8.15±0.11

    8.27

    0.90:0.10

    0.77

    16.68±0.23

    64.68±0.47

    8.31±0.13

    8.46

    0.85:0.15

    0.78

    16.77±0.21

    68.07±0.39

    8.97±0.07

    9.03

    0.80: 0.20

    0.79

    16.25±0.19

    65.12±0.58

    8.42±0.10

    8.53

    0.70:0.30

    0.80

    15.01±0.16

    63.03±0.41

    7.49±0.13

    7.67

    0.50:0.50

    0.83

    14.02± 0.13

    59.27±0.38

    6.94±0.07

    7.01

    0.25:0.75

    0.88

    13.45±0.11

    49.17±0.42

    5.80±0.09

    5.92

    0.00:1.00

    0.93

    12.78±0.08

    53.21±0.35

    6.29±0.10

    6.44

    Average value±standard deviation were calculated from 20 independent devices

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1